Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom.
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom,
J Neurosci. 2019 Jun 12;39(24):4694-4713. doi: 10.1523/JNEUROSCI.2706-18.2019. Epub 2019 Apr 4.
Adult zebrafish, in contrast to mammals, regenerate neurons in their brain, but the extent and variability of this capacity is unclear. Here we ask whether the loss of various dopaminergic neuron populations is sufficient to trigger their functional regeneration. Both sexes of zebrafish were analyzed. Genetic lineage tracing shows that specific diencephalic ependymo-radial glial (ERG) progenitor cells give rise to new dopaminergic [tyrosine hydroxylase-positive (TH)] neurons. Ablation elicits an immune response, increased proliferation of ERG progenitor cells, and increased addition of new TH neurons in populations that constitutively add new neurons (e.g., diencephalic population 5/6). Inhibiting the immune response attenuates neurogenesis to control levels. Boosting the immune response enhances ERG proliferation, but not addition of TH neurons. In contrast, in populations in which constitutive neurogenesis is undetectable (e.g., the posterior tuberculum and locus ceruleus), cell replacement and tissue integration are incomplete and transient. This is associated with a loss of spinal TH axons, as well as permanent deficits in shoaling and reproductive behavior. Hence, dopaminergic neuron populations in the adult zebrafish brain show vast differences in regenerative capacity that correlate with constitutive addition of neurons and depend on immune system activation. Despite the fact that zebrafish show a high propensity to regenerate neurons in the brain, this study reveals that not all types of dopaminergic neurons are functionally regenerated after specific ablation. Hence, in the same adult vertebrate brain, mechanisms of successful and incomplete regeneration can be studied. We identify progenitor cells for dopaminergic neurons and show that activating the immune system promotes the proliferation of these cells. However, in some areas of the brain this only leads to insufficient replacement of functionally important dopaminergic neurons that later disappear. Understanding the mechanisms of regeneration in zebrafish may inform interventions targeting the regeneration of functionally important neurons, such as dopaminergic neurons, from endogenous progenitor cells in nonregenerating mammals.
与哺乳动物不同,成年斑马鱼的大脑可以再生神经元,但这种能力的程度和可变性尚不清楚。在这里,我们探讨了各种多巴胺能神经元群体的缺失是否足以触发其功能再生。我们分析了雌雄两种斑马鱼。遗传谱系追踪显示,特定的神经上皮-放射状胶质(ERG)前体细胞产生新的多巴胺能(酪氨酸羟化酶阳性(TH))神经元。消融会引发免疫反应,增加 ERG 前体细胞的增殖,并在持续产生新神经元的群体(例如,间脑群体 5/6)中增加新的 TH 神经元的数量。抑制免疫反应可将神经发生减少到对照水平。增强免疫反应会促进 ERG 增殖,但不会增加 TH 神经元的数量。相比之下,在组成性神经发生不可检测的群体中(例如,后结节和蓝斑),细胞替代和组织整合不完全且短暂。这与脊髓 TH 轴突的丧失以及集群和生殖行为的永久性缺陷有关。因此,成年斑马鱼大脑中的多巴胺能神经元群体在再生能力方面存在巨大差异,这与神经元的组成性添加有关,并取决于免疫系统的激活。尽管事实是斑马鱼在大脑中再生神经元的倾向很高,但本研究表明,并非所有类型的多巴胺能神经元在特定消融后都能实现功能再生。因此,在同一成年脊椎动物大脑中,可以研究成功和不完全再生的机制。我们确定了多巴胺能神经元的祖细胞,并表明激活免疫系统可促进这些细胞的增殖。然而,在大脑的某些区域,这只会导致功能重要的多巴胺能神经元的替代不足,随后这些神经元会消失。了解斑马鱼的再生机制可能为靶向内源性祖细胞的功能重要神经元(如多巴胺能神经元)的再生的干预措施提供信息,这些神经元在非再生哺乳动物中无法再生。