Suppr超能文献

测量人类遗传学中对突变的不耐受性。

Measuring intolerance to mutation in human genetics.

机构信息

Department of Biological Sciences, Columbia University, New York, NY, USA.

Department of Systems Biology, Columbia University, New York, NY, USA.

出版信息

Nat Genet. 2019 May;51(5):772-776. doi: 10.1038/s41588-019-0383-1. Epub 2019 Apr 8.

Abstract

In numerous applications, from working with animal models to mapping the genetic basis of human disease susceptibility, knowing whether a single disrupting mutation in a gene is likely to be deleterious is useful. With this goal in mind, a number of measures have been developed to identify genes in which protein-truncating variants (PTVs), or other types of mutations, are absent or kept at very low frequency in large population samples-genes that appear 'intolerant' to mutation. One measure in particular, the probability of being loss-of-function intolerant (pLI), has been widely adopted. This measure was designed to classify genes into three categories, null, recessive and haploinsufficient, on the basis of the contrast between observed and expected numbers of PTVs. Such population-genetic approaches can be useful in many applications. As we clarify, however, they reflect the strength of selection acting on heterozygotes and not dominance or haploinsufficiency.

摘要

在许多应用中,从使用动物模型到绘制人类疾病易感性的遗传基础,了解基因中的单个破坏突变是否可能具有危害性是很有用的。考虑到这一目标,已经开发了许多措施来识别蛋白质截断变异(PTV)或其他类型突变在大人群样本中不存在或保持非常低频率的基因——这些基因似乎对突变“不耐受”。特别是一种措施,即功能丧失不耐受的概率(pLI),已被广泛采用。该措施旨在根据观察到的和预期的 PTV 数量之间的差异,将基因分为三类,即无效、隐性和杂合不足。这种群体遗传学方法在许多应用中可能很有用。然而,正如我们所澄清的那样,它们反映了对杂合子起作用的选择强度,而不是显性或杂合不足。

相似文献

1
Measuring intolerance to mutation in human genetics.
Nat Genet. 2019 May;51(5):772-776. doi: 10.1038/s41588-019-0383-1. Epub 2019 Apr 8.
2
The population genetics of human disease: The case of recessive, lethal mutations.
PLoS Genet. 2017 Sep 28;13(9):e1006915. doi: 10.1371/journal.pgen.1006915. eCollection 2017 Sep.
4
Total number of individuals affected by deleterious mutant genes in a finite population.
Ann Hum Genet. 1975 Jan;38(3):333-40. doi: 10.1111/j.1469-1809.1975.tb00618.x.
5
Multiple mutations in a specific gene in a small population.
C R Acad Sci III. 1998 Jul;321(7):553-5. doi: 10.1016/s0764-4469(98)80456-3.
7
Resolving the Conflict Between Associative Overdominance and Background Selection.
Genetics. 2016 Jul;203(3):1315-34. doi: 10.1534/genetics.116.188912. Epub 2016 May 6.
8
Overcoming constraints on the detection of recessive selection in human genes from population frequency data.
Am J Hum Genet. 2022 Jan 6;109(1):33-49. doi: 10.1016/j.ajhg.2021.12.001. Epub 2021 Dec 23.
9
Estimating the selective effects of heterozygous protein-truncating variants from human exome data.
Nat Genet. 2017 May;49(5):806-810. doi: 10.1038/ng.3831. Epub 2017 Apr 3.
10
Fixation probability and time in subdivided populations.
Genetics. 2003 Jun;164(2):767-79. doi: 10.1093/genetics/164.2.767.

引用本文的文献

3
No evidence that human GIGYF2 interacts with GRB10: implications for human disease.
Life Sci Alliance. 2025 Jun 16;8(9). doi: 10.26508/lsa.202503334. Print 2025 Sep.
4
The distribution of fitness effects varies phylogenetically across animals.
bioRxiv. 2025 May 13:2025.05.13.653358. doi: 10.1101/2025.05.13.653358.
5
Mutation-selection-drift balance models of complex diseases.
bioRxiv. 2025 May 18:2025.05.18.654722. doi: 10.1101/2025.05.18.654722.
6
is a circadian gene and causes familial advanced sleep phase.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2424387122. doi: 10.1073/pnas.2424387122. Epub 2025 Jun 3.
7
Study design and the sampling of deleterious rare variants in biobank-scale datasets.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2425196122. doi: 10.1073/pnas.2425196122. Epub 2025 Jun 3.
8
The distribution of highly deleterious variants across human ancestry groups.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2503857122. doi: 10.1073/pnas.2503857122. Epub 2025 May 23.
10
Disruption of Distal Regulatory Elements as a Possible Mechanism Implicated in Corneal Endothelial Dystrophy.
Hum Mutat. 2024 Jan 4;2024:4450082. doi: 10.1155/2024/4450082. eCollection 2024.

本文引用的文献

2
A map of constrained coding regions in the human genome.
Nat Genet. 2019 Jan;51(1):88-95. doi: 10.1038/s41588-018-0294-6. Epub 2018 Dec 10.
3
De novo variants in neurodevelopmental disorders with epilepsy.
Nat Genet. 2018 Jul;50(7):1048-1053. doi: 10.1038/s41588-018-0143-7. Epub 2018 Jun 25.
4
A population genetic interpretation of GWAS findings for human quantitative traits.
PLoS Biol. 2018 Mar 16;16(3):e2002985. doi: 10.1371/journal.pbio.2002985. eCollection 2018 Mar.
6
Human gene essentiality.
Nat Rev Genet. 2018 Jan;19(1):51-62. doi: 10.1038/nrg.2017.75. Epub 2017 Oct 30.
7
MAPPIN: a method for annotating, predicting pathogenicity and mode of inheritance for nonsynonymous variants.
Nucleic Acids Res. 2017 Oct 13;45(18):10393-10402. doi: 10.1093/nar/gkx730.
8
The population genetics of human disease: The case of recessive, lethal mutations.
PLoS Genet. 2017 Sep 28;13(9):e1006915. doi: 10.1371/journal.pgen.1006915. eCollection 2017 Sep.
10
Settling the score: variant prioritization and Mendelian disease.
Nat Rev Genet. 2017 Oct;18(10):599-612. doi: 10.1038/nrg.2017.52. Epub 2017 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验