Suppr超能文献

转录组对依伐卡托的反应及对依伐卡托临床反应性的预测。

Transcriptomic Responses to Ivacaftor and Prediction of Ivacaftor Clinical Responsiveness.

机构信息

Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.

Department of Biostatistics, School of Public Health, and.

出版信息

Am J Respir Cell Mol Biol. 2019 Nov;61(5):643-652. doi: 10.1165/rcmb.2019-0032OC.

Abstract

Ivacaftor is a drug that was recently approved by the U.S. Food and Drug Administration for the treatment of patients with cystic fibrosis (CF) and at least one copy of the G511D mutation in the CFTR (CF transmembrane conductance regulator) gene. The transcriptomic effect of ivacaftor in patients with CF remains unclear. Here, we sought to examine whether and how the transcriptome of patients is influenced by ivacaftor treatment, and to determine whether these data allow prediction of ivacaftor responsiveness. Our data originated from the G551D Observational Study (GOAL). We performed RNA sequencing (RNA-seq) on peripheral blood mononuclear cells (PBMCs) from 56 patients and compared the transcriptomic changes that occurred before and after ivacaftor treatment. We used consensus clustering to stratify patients into subgroups based on their clinical responses after treatment, and we determined differences between subgroups in baseline gene expression. A random forest model was built to predict ivacaftor responsiveness. We identified 239 genes (false discovery rate < 0.1) that were significantly influenced by ivacaftor in PBMCs. The functions of these genes relate to cell differentiation, microbial infection, inflammation, Toll-like receptor signaling, and metabolism. We classified patients into "good" and "moderate" responder groups based on their clinical response to ivacaftor. We identified a panel of signature genes and built a statistical model for predicting CFTR modulator responsiveness. Despite a limited sample size, adequate prediction performance was achieved with an accuracy of 0.92. In conclusion, for the first time, the present study demonstrates profound transcriptomic impacts of ivacaftor in PBMCs from patients with CF, and provides a pilot statistical model for predicting clinical responsiveness to ivacaftor before treatment.

摘要

依伐卡托是一种药物,最近获得美国食品和药物管理局批准,用于治疗囊性纤维化(CF)患者,这些患者至少携带一个 CFTR(CF 跨膜电导调节因子)基因 G511D 突变。依伐卡托对 CF 患者的转录组影响尚不清楚。在此,我们试图研究依伐卡托治疗是否以及如何影响患者的转录组,并确定这些数据是否可以预测依伐卡托的反应性。我们的数据来源于 G551D 观察性研究(GOAL)。我们对 56 名患者的外周血单核细胞(PBMC)进行了 RNA 测序(RNA-seq),比较了依伐卡托治疗前后发生的转录组变化。我们使用共识聚类法根据治疗后患者的临床反应将患者分为亚组,并确定亚组间基线基因表达的差异。建立随机森林模型来预测依伐卡托的反应性。我们确定了 239 个基因(错误发现率<0.1),这些基因在 PBMC 中受到依伐卡托的显著影响。这些基因的功能与细胞分化、微生物感染、炎症、Toll 样受体信号和代谢有关。我们根据患者对依伐卡托的临床反应将患者分为“良好”和“中度”反应者。我们确定了一组特征基因,并建立了一个用于预测 CFTR 调节剂反应性的统计模型。尽管样本量有限,但预测性能良好,准确率为 0.92。总之,本研究首次证明了依伐卡托在 CF 患者 PBMC 中具有深远的转录组影响,并提供了一个用于预测治疗前依伐卡托临床反应性的初步统计模型。

相似文献

1
Transcriptomic Responses to Ivacaftor and Prediction of Ivacaftor Clinical Responsiveness.
Am J Respir Cell Mol Biol. 2019 Nov;61(5):643-652. doi: 10.1165/rcmb.2019-0032OC.
2
Resveratrol and ivacaftor are additive G551D CFTR-channel potentiators: therapeutic implications for cystic fibrosis sinus disease.
Int Forum Allergy Rhinol. 2019 Jan;9(1):100-105. doi: 10.1002/alr.22202. Epub 2018 Aug 27.
3
CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy.
Pediatr Pulmonol. 2017 Jul;52(7):900-908. doi: 10.1002/ppul.23712. Epub 2017 Apr 26.
4
Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis.
Cochrane Database Syst Rev. 2015 Mar 26(3):CD009841. doi: 10.1002/14651858.CD009841.pub2.
5
Whole-blood transcriptomic responses to lumacaftor/ivacaftor therapy in cystic fibrosis.
J Cyst Fibros. 2020 Mar;19(2):245-254. doi: 10.1016/j.jcf.2019.08.021. Epub 2019 Aug 29.
7
Cystic fibrosis transmembrane conductance regulator-modifying medications: the future of cystic fibrosis treatment.
Ann Pharmacother. 2012 Jul-Aug;46(7-8):1065-75. doi: 10.1345/aph.1R076. Epub 2012 Jun 26.
8
Ivacaftor partially corrects airway inflammation in a humanized G551D rat.
Am J Physiol Lung Cell Mol Physiol. 2021 Jun 1;320(6):L1093-L1100. doi: 10.1152/ajplung.00082.2021. Epub 2021 Apr 7.

引用本文的文献

1
Recent developments in cystic fibrosis drug discovery: where are we today?
Expert Opin Drug Discov. 2025 May;20(5):659-682. doi: 10.1080/17460441.2025.2490250. Epub 2025 Apr 13.
2
Cystic fibrosis: new challenges and perspectives beyond elexacaftor/tezacaftor/ivacaftor.
Ther Adv Respir Dis. 2025 Jan-Dec;19:17534666251323194. doi: 10.1177/17534666251323194. Epub 2025 Mar 31.
3
Gene expression responses of CF airway epithelial cells exposed to elexacaftor/tezacaftor/ivacaftor suggest benefits beyond improved CFTR channel function.
Am J Physiol Lung Cell Mol Physiol. 2024 Dec 1;327(6):L905-L916. doi: 10.1152/ajplung.00272.2024. Epub 2024 Oct 22.
4
Nasal Epithelium Transcriptomics Predict Clinical Response to Elexacaftor/Tezacaftor/Ivacaftor.
Am J Respir Cell Mol Biol. 2024 Dec;71(6):730-739. doi: 10.1165/rcmb.2024-0103OC.
5
RNA Sequencing in Disease Diagnosis.
Annu Rev Genomics Hum Genet. 2024 Aug;25(1):353-367. doi: 10.1146/annurev-genom-021623-121812. Epub 2024 Aug 6.
7
Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators.
Int J Mol Sci. 2023 Mar 5;24(5):5010. doi: 10.3390/ijms24055010.
8
The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation.
Clin Chest Med. 2022 Dec;43(4):647-665. doi: 10.1016/j.ccm.2022.06.007.
10
Mucosal Immunity in Cystic Fibrosis.
J Immunol. 2021 Dec 15;207(12):2901-2912. doi: 10.4049/jimmunol.2100424.

本文引用的文献

1
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
2
Cystic fibrosis genetics: from molecular understanding to clinical application.
Nat Rev Genet. 2015 Jan;16(1):45-56. doi: 10.1038/nrg3849. Epub 2014 Nov 18.
3
Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis.
Sci Transl Med. 2014 Jul 23;6(246):246ra96. doi: 10.1126/scitranslmed.3008680.
5
Antibacterial properties of the CFTR potentiator ivacaftor.
J Cyst Fibros. 2014 Sep;13(5):515-9. doi: 10.1016/j.jcf.2014.02.004. Epub 2014 Mar 5.
6
Causal analysis approaches in Ingenuity Pathway Analysis.
Bioinformatics. 2014 Feb 15;30(4):523-30. doi: 10.1093/bioinformatics/btt703. Epub 2013 Dec 13.
7
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.
Bioinformatics. 2014 Apr 1;30(7):923-30. doi: 10.1093/bioinformatics/btt656. Epub 2013 Nov 13.
8
Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene.
Nat Genet. 2013 Oct;45(10):1160-7. doi: 10.1038/ng.2745. Epub 2013 Aug 25.
9
Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation.
Am J Respir Crit Care Med. 2013 Jun 1;187(11):1219-25. doi: 10.1164/rccm.201301-0153OC.
10
STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验