Huang Yen-Tsung
Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
Biometrics. 2019 Dec;75(4):1191-1204. doi: 10.1111/biom.13073. Epub 2019 Jun 17.
Mediation effects of multiple mediators are determined by two associations: one between an exposure and mediators ( - ) and the other between the mediators and an outcome conditional on the exposure ( - ). The test for mediation effects is conducted under a composite null hypothesis, that is, either one of the - and - associations is zero or both are zeros. Without accounting for the composite null, the type 1 error rate within a study containing a large number of multimediator tests may be much less than the expected. We propose a novel test to address the issue. For each mediation test , , we examine the - and - associations using two separate variance component tests. Assuming a zero-mean working distribution with a common variance for the element-wise - (and - ) associations, score tests for the variance components are constructed. We transform the test statistics into two normally distributed statistics under the null. Using a recently developed result, we conduct hypothesis tests accounting for the composite null hypothesis by adjusting for the variances of the normally distributed statistics for the - and - associations. Advantages of the proposed test over other methods are illustrated in simulation studies and a data application where we analyze lung cancer data from The Cancer Genome Atlas to investigate the smoking effect on gene expression through DNA methylation in 15 114 genes.
一个是暴露因素与中介变量之间的关联(-),另一个是中介变量与在暴露因素条件下的结局之间的关联(-)。中介效应检验是在一个复合零假设下进行的,也就是说,-和-关联中的任何一个为零或者两者均为零。如果不考虑复合零假设,在包含大量多中介变量检验的研究中,一类错误率可能会远低于预期。我们提出了一种新颖的检验方法来解决这个问题。对于每个中介检验,,我们使用两个独立的方差成分检验来检验-和-关联。假设元素级-(和-)关联具有零均值工作分布且方差相同,构建方差成分的得分检验。我们将检验统计量在零假设下转换为两个正态分布的统计量。利用最近得到的结果,我们通过调整-和-关联的正态分布统计量的方差来进行考虑复合零假设的假设检验。在模拟研究和一个数据应用中展示了所提出的检验方法相对于其他方法的优势,在该数据应用中,我们分析了来自癌症基因组图谱的肺癌数据,以研究吸烟通过15114个基因的DNA甲基化对基因表达的影响。