Suppr超能文献

可靠的区域 MRI 形态学测量的插补策略。

Imputation Strategy for Reliable Regional MRI Morphological Measurements.

机构信息

Department of Communication Sciences and Disorders, California State University, Fullerton, CA, USA.

Public Health Graduate Program, University of California Merced, Merced, CA, USA.

出版信息

Neuroinformatics. 2020 Jan;18(1):59-70. doi: 10.1007/s12021-019-09426-x.

Abstract

Regional morphological analysis represents a crucial step in most neuroimaging studies. Results from brain segmentation techniques are intrinsically prone to certain degrees of variability, mainly as results of suboptimal segmentation. To reduce this inherent variability, the errors are often identified through visual inspection and then corrected (semi)manually. Identification and correction of incorrect segmentation could be very expensive for large-scale studies. While identification of the incorrect results can be done relatively fast even with manual inspection, the correction step is extremely time-consuming, as it requires training staff to perform laborious manual corrections. Here we frame the correction phase of this problem as a missing data problem. Instead of manually adjusting the segmentation outputs, our computational approach aims to derive accurate morphological measures by machine learning imputation. Data imputation techniques may be used to replace missing or incorrect region average values with carefully chosen imputed values, all of which are computed based on other available multivariate information. We examined our approach of correcting segmentation outputs on a cohort of 970 subjects, which were undergone an extensive, time-consuming, manual post-segmentation correction. A random forest imputation technique recovered the gold standard results with a significant accuracy (r = 0.93, p < 0.0001; when 30% of the segmentations were considered incorrect in a non-random fashion). The random forest technique proved to be most effective for big data studies (N > 250).

摘要

区域形态分析是大多数神经影像学研究的关键步骤。脑分割技术的结果本质上容易受到一定程度的可变性的影响,主要是由于分割不理想。为了减少这种固有变异性,错误通常通过目视检查来识别,然后进行(半)手动校正。对于大规模研究来说,识别和纠正不正确的分割可能非常昂贵。虽然即使通过手动检查也可以相对快速地识别不正确的结果,但校正步骤非常耗时,因为需要培训人员进行费力的手动校正。在这里,我们将该问题的校正阶段框定为缺失数据问题。我们的计算方法不是手动调整分割输出,而是旨在通过机器学习插补来得出准确的形态学度量。数据插补技术可用于用精心选择的插补值替换缺失或不正确的区域平均值,所有这些值都是基于其他可用的多元信息计算得出的。我们在一个由 970 名受试者组成的队列上检查了我们的校正分割输出的方法,这些受试者经历了广泛的、耗时的、手动的分割后校正。随机森林插补技术以显著的准确性(r=0.93,p<0.0001;当以非随机方式考虑 30%的分割不正确时)恢复了金标准结果。随机森林技术对于大数据研究(N>250)最有效。

相似文献

1
Imputation Strategy for Reliable Regional MRI Morphological Measurements.
Neuroinformatics. 2020 Jan;18(1):59-70. doi: 10.1007/s12021-019-09426-x.
3
Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.
PLoS One. 2016 May 23;11(5):e0156123. doi: 10.1371/journal.pone.0156123. eCollection 2016.
5
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
6
Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation.
Neuroimage. 2018 Apr 15;170:182-198. doi: 10.1016/j.neuroimage.2017.02.069. Epub 2017 Mar 1.
7
An efficient and accurate method for robust inter-dataset brain extraction and comparisons with 9 other methods.
Hum Brain Mapp. 2018 Nov;39(11):4241-4257. doi: 10.1002/hbm.24243. Epub 2018 Jul 4.
8
9
Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data.
Neuroimage. 2019 Apr 1;189:116-129. doi: 10.1016/j.neuroimage.2019.01.014. Epub 2019 Jan 8.
10
Machine learning identifies stroke features between species.
Theranostics. 2021 Jan 1;11(6):3017-3034. doi: 10.7150/thno.51887. eCollection 2021.

引用本文的文献

3
Three-dimensional self-attention conditional GAN with spectral normalization for multimodal neuroimaging synthesis.
Magn Reson Med. 2021 Sep;86(3):1718-1733. doi: 10.1002/mrm.28819. Epub 2021 May 7.
4
Global and Regional Changes in Perivascular Space in Idiopathic and Familial Parkinson's Disease.
Mov Disord. 2021 May;36(5):1126-1136. doi: 10.1002/mds.28473. Epub 2021 Jan 20.
5
Volumetric distribution of perivascular space in relation to mild cognitive impairment.
Neurobiol Aging. 2021 Mar;99:28-43. doi: 10.1016/j.neurobiolaging.2020.12.010. Epub 2020 Dec 16.

本文引用的文献

1
Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data.
Neuroimage. 2019 Apr 1;189:116-129. doi: 10.1016/j.neuroimage.2019.01.014. Epub 2019 Jan 8.
2
Identifying errors in Freesurfer automated skull stripping and the incremental utility of manual intervention.
Brain Imaging Behav. 2019 Oct;13(5):1281-1291. doi: 10.1007/s11682-018-9951-8.
3
Neuroanatomical morphometric characterization of sex differences in youth using statistical learning.
Neuroimage. 2018 May 15;172:217-227. doi: 10.1016/j.neuroimage.2018.01.065. Epub 2018 Feb 3.
4
Cortical thickness alterations linked to somatoform and psychological dissociation in functional neurological disorders.
Hum Brain Mapp. 2018 Jan;39(1):428-439. doi: 10.1002/hbm.23853. Epub 2017 Oct 28.
6
Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation.
Neuroimage. 2018 Apr 15;170:182-198. doi: 10.1016/j.neuroimage.2017.02.069. Epub 2017 Mar 1.
7
8
Structural Neuroimaging Genetics Interactions in Alzheimer's Disease.
J Alzheimers Dis. 2015;48(4):1051-63. doi: 10.3233/JAD-150335.
9
Big biomedical data as the key resource for discovery science.
J Am Med Inform Assoc. 2015 Nov;22(6):1126-31. doi: 10.1093/jamia/ocv077. Epub 2015 Jul 21.
10
The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth.
Neuroimage. 2016 Jan 1;124(Pt B):1115-1119. doi: 10.1016/j.neuroimage.2015.03.056. Epub 2015 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验