Suppr超能文献

L6 和 C2C12 细胞中线粒体呼吸和 H2O2 排放的固有差异。

Robust intrinsic differences in mitochondrial respiration and HO emission between L6 and C2C12 cells.

机构信息

School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon.

Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon.

出版信息

Am J Physiol Cell Physiol. 2019 Aug 1;317(2):C339-C347. doi: 10.1152/ajpcell.00343.2018. Epub 2019 May 15.

Abstract

Rat L6 and mouse C2C12 cell lines are commonly used to investigate myocellular metabolism. Mitochondrial characteristics of these cell lines remain poorly understood despite mitochondria being implicated in the development of various metabolic diseases. To address this need, we performed high-resolution respirometry to determine rates of oxygen consumption and HO emission in suspended myoblasts during multiple substrate-uncoupler-inhibitor titration protocols. The capacity for oxidative phosphorylation supported by glutamate and malate, with and without succinate, or supported by palmitoyl-l-carnitine was lower in L6 compared with C2C12 myoblasts (all < 0.01 for L6 vs. C2C12). Conversely, HO emission during oxidative phosphorylation was greater in L6 than C2C12 myoblasts ( < 0.01 for L6 vs. C2C12). Induction of noncoupled respiration revealed a significantly greater electron transfer capacity in C2C12 compared with L6 myoblasts, regardless of the substrate(s) provided. Mitochondrial metabolism was also investigated in differentiated L6 and C2C12 myotubes. Basal rates of oxygen consumption were not different between intact, adherent L6, and C2C12 myotubes; however, noncoupled respiration was significantly lower in L6 compared with C2C12 myotubes ( = 0.01). In summary, L6 myoblasts had lower respiration rates than C2C12 myoblasts, including lesser capacity for fatty acid oxidation and greater electron leak toward HO. L6 cells also retain a lower capacity for electron transfer compared with C2C12 following differentiation to form fused myotubes. Intrinsic differences in mitochondrial metabolism between these cell lines should be considered when modeling and investigating myocellular metabolism.

摘要

大鼠 L6 和小鼠 C2C12 细胞系常用于研究肌细胞代谢。尽管线粒体与各种代谢疾病的发展有关,但这些细胞系的线粒体特征仍了解甚少。为了解决这一需求,我们进行了高分辨率呼吸测量,以确定悬浮成肌细胞在多种底物-解偶联剂-抑制剂滴定方案中耗氧量和 H2O2 排放率。在有或没有琥珀酸的情况下,谷氨酸和苹果酸支持的氧化磷酸化能力,以及棕榈酰肉碱支持的氧化磷酸化能力,在 L6 中均低于 C2C12 成肌细胞(所有 L6 与 C2C12 相比均 < 0.01)。相反,在 L6 中,氧化磷酸化过程中的 H2O2 排放大于 C2C12 成肌细胞(L6 与 C2C12 相比 < 0.01)。非偶联呼吸的诱导表明,无论提供何种底物,C2C12 中的电子传递能力均显著大于 L6。分化后的 L6 和 C2C12 肌管中的线粒体代谢也进行了研究。完整的贴壁 L6 和 C2C12 肌管之间的基础耗氧量没有差异;然而,与 C2C12 肌管相比,L6 中的非偶联呼吸显著降低( = 0.01)。总之,与 C2C12 成肌细胞相比,L6 成肌细胞的呼吸率较低,包括脂肪酸氧化能力较低和向 H2O2 的电子泄漏较多。与分化为融合肌管的 C2C12 相比,L6 细胞的电子传递能力也较低。在对肌细胞代谢进行建模和研究时,应考虑这些细胞系之间线粒体代谢的内在差异。

相似文献

1
Robust intrinsic differences in mitochondrial respiration and HO emission between L6 and C2C12 cells.
Am J Physiol Cell Physiol. 2019 Aug 1;317(2):C339-C347. doi: 10.1152/ajpcell.00343.2018. Epub 2019 May 15.
2
Low glucose but not galactose enhances oxidative mitochondrial metabolism in C2C12 myoblasts and myotubes.
PLoS One. 2013 Aug 5;8(8):e70772. doi: 10.1371/journal.pone.0070772. Print 2013.
4
The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers.
J Appl Physiol (1985). 2019 Aug 1;127(2):312-319. doi: 10.1152/japplphysiol.00652.2018. Epub 2019 May 30.
6
Effect of the mitochondrial transaminase (GOT2) on membrane potential-sensitive respiration in mitochondria of differentiated C2C12 muscle cells.
Am J Physiol Cell Physiol. 2024 Jun 1;326(6):C1669-C1682. doi: 10.1152/ajpcell.00576.2023. Epub 2024 Apr 22.
7
Substrate-Specific Respiration of Isolated Skeletal Muscle Mitochondria after 1 h of Moderate Cycling in Sedentary Adults.
Med Sci Sports Exerc. 2021 Jul 1;53(7):1375-1384. doi: 10.1249/MSS.0000000000002615.
9
Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration.
J Biol Chem. 2007 Oct 26;282(43):31257-66. doi: 10.1074/jbc.M706129200. Epub 2007 Aug 30.

引用本文的文献

1
ROS-Drp1-mitophagy feedback loop regulates myogenic differentiation via actin cytoskeleton remodeling-mediated MRTF-A/SRF axis.
Redox Rep. 2025 Dec;30(1):2536400. doi: 10.1080/13510002.2025.2536400. Epub 2025 Jul 21.
2
DNM1L-mediated fission governs mitophagy & mitochondrial biogenesis during myogenic differentiation.
Cell Commun Signal. 2025 Apr 1;23(1):158. doi: 10.1186/s12964-025-02142-x.
5
The Role of Mitophagy in Skeletal Muscle Damage and Regeneration.
Cells. 2023 Feb 24;12(5):716. doi: 10.3390/cells12050716.
8
Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle.
Front Cell Dev Biol. 2022 Feb 21;10:826981. doi: 10.3389/fcell.2022.826981. eCollection 2022.
9
Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies.
Int J Mol Sci. 2021 Sep 6;22(17):9630. doi: 10.3390/ijms22179630.

本文引用的文献

1
Insulin-stimulated Rac1-GTP binding is not impaired by palmitate treatment in L6 myotubes.
Physiol Rep. 2018 Dec;6(24):e13956. doi: 10.14814/phy2.13956.
3
Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment.
Am J Physiol Endocrinol Metab. 2017 Nov 1;313(5):E552-E562. doi: 10.1152/ajpendo.00144.2017. Epub 2017 Jul 11.
4
A Direct Comparison of Metabolic Responses to High-Fat Diet in C57BL/6J and C57BL/6NJ Mice.
Diabetes. 2016 Nov;65(11):3249-3261. doi: 10.2337/db16-0291. Epub 2016 Aug 5.
5
Predictors of Whole-Body Insulin Sensitivity Across Ages and Adiposity in Adult Humans.
J Clin Endocrinol Metab. 2016 Feb;101(2):626-34. doi: 10.1210/jc.2015-2892. Epub 2015 Dec 28.
6
Nitration of Hsp90 on Tyrosine 33 Regulates Mitochondrial Metabolism.
J Biol Chem. 2015 Jul 31;290(31):19055-66. doi: 10.1074/jbc.M115.663278. Epub 2015 Jun 17.
10
Different timing of changes in mitochondrial functions following endurance training.
Med Sci Sports Exerc. 2012 Feb;44(2):217-24. doi: 10.1249/MSS.0b013e31822b0bd4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验