Suppr超能文献

蛋白质融解温度无法全面评估蛋白质折叠自由能是否为蛋白质中所见的普遍丰度-进化速率相关性的基础。

Protein Melting Temperature Cannot Fully Assess Whether Protein Folding Free Energy Underlies the Universal Abundance-Evolutionary Rate Correlation Seen in Proteins.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA.

出版信息

Mol Biol Evol. 2019 Sep 1;36(9):1955-1963. doi: 10.1093/molbev/msz119.

Abstract

The protein misfolding avoidance hypothesis explains the universal negative correlation between protein abundance and sequence evolutionary rate across the proteome by identifying protein folding free energy (ΔG) as the confounding variable. Abundant proteins resist toxic misfolding events by being more stable, and more stable proteins evolve slower because their mutations are more destabilizing. Direct supporting evidence consists only of computer simulations. A study taking advantage of a recent experimental breakthrough in measuring protein stability proteome-wide through melting temperature (Tm) (Leuenberger et al. 2017), found weak misfolding avoidance hypothesis support for the Escherichia coli proteome, and no support for the Saccharomyces cerevisiae, Homo sapiens, and Thermus thermophilus proteomes (Plata and Vitkup 2018). I find that the nontrivial relationship between Tm and ΔG and inaccuracy in Tm measurements by Leuenberger et al. 2017 can be responsible for not observing strong positive abundance-Tm and strong negative Tm-evolutionary rate correlations.

摘要

蛋白质错误折叠避免假说通过将蛋白质折叠自由能(ΔG)确定为混杂变量,解释了蛋白质丰度和序列进化率在整个蛋白质组中普遍存在的负相关关系。丰富的蛋白质通过更加稳定来抵抗有毒的错误折叠事件,而更稳定的蛋白质进化速度更慢,因为它们的突变更不稳定。直接支持证据仅包括计算机模拟。一项利用最近在通过熔点(Tm)测量蛋白质稳定性方面取得的实验突破的研究(Leuenberger 等人,2017 年),对大肠杆菌蛋白质组的错误折叠避免假说提供了微弱的支持,而对酿酒酵母、智人和嗜热栖热菌蛋白质组没有支持(Plata 和 Vitkup,2018 年)。我发现,Tm 和 ΔG 之间的非平凡关系以及 Leuenberger 等人 2017 年 Tm 测量的不准确性可能导致没有观察到强烈的丰度-Tm 和强烈的负 Tm-进化率相关性。

相似文献

2
Avoidance of protein unfolding constrains protein stability in long-term evolution.
Biophys J. 2021 Jun 15;120(12):2413-2424. doi: 10.1016/j.bpj.2021.03.042. Epub 2021 Apr 29.
3
Highly Abundant Proteins Are Highly Thermostable.
Genome Biol Evol. 2023 Jul 3;15(7). doi: 10.1093/gbe/evad112.
6
Protein biophysics explains why highly abundant proteins evolve slowly.
Cell Rep. 2012 Aug 30;2(2):249-56. doi: 10.1016/j.celrep.2012.06.022. Epub 2012 Aug 2.
8
Cellular crowding imposes global constraints on the chemistry and evolution of proteomes.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20461-6. doi: 10.1073/pnas.1209312109. Epub 2012 Nov 26.
10
Chaperone client proteins evolve slower than non-client proteins.
Funct Integr Genomics. 2020 Sep;20(5):621-631. doi: 10.1007/s10142-020-00740-1. Epub 2020 May 6.

引用本文的文献

1
Potts Hamiltonian Models and Molecular Dynamics Free Energy Simulations for Predicting the Impact of Mutations on Protein Kinase Stability.
J Phys Chem B. 2024 Feb 22;128(7):1656-1667. doi: 10.1021/acs.jpcb.3c08097. Epub 2024 Feb 13.
2
Highly Abundant Proteins Are Highly Thermostable.
Genome Biol Evol. 2023 Jul 3;15(7). doi: 10.1093/gbe/evad112.
5
A computational exploration of resilience and evolvability of protein-protein interaction networks.
Commun Biol. 2021 Dec 2;4(1):1352. doi: 10.1038/s42003-021-02867-8.
6
Abundance Imparts Evolutionary Constraints of Similar Magnitude on the Buried, Surface, and Disordered Regions of Proteins.
Front Mol Biosci. 2021 Apr 30;8:626729. doi: 10.3389/fmolb.2021.626729. eCollection 2021.
7
Avoidance of protein unfolding constrains protein stability in long-term evolution.
Biophys J. 2021 Jun 15;120(12):2413-2424. doi: 10.1016/j.bpj.2021.03.042. Epub 2021 Apr 29.
8
Study on the Influence of mRNA, the Genetic Language, on Protein Folding Rates.
Front Genet. 2021 Apr 6;12:635250. doi: 10.3389/fgene.2021.635250. eCollection 2021.

本文引用的文献

1
UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. doi: 10.1093/nar/gky1049.
2
Thermal proteome profiling in bacteria: probing protein state .
Mol Syst Biol. 2018 Jul 6;14(7):e8242. doi: 10.15252/msb.20188242.
4
Pervasive Protein Thermal Stability Variation during the Cell Cycle.
Cell. 2018 May 31;173(6):1495-1507.e18. doi: 10.1016/j.cell.2018.03.053. Epub 2018 Apr 26.
5
Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.
Science. 2018 Mar 9;359(6380):1170-1177. doi: 10.1126/science.aan0346. Epub 2018 Feb 8.
7
Evidence of evolutionary selection for cotranslational folding.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11434-11439. doi: 10.1073/pnas.1705772114. Epub 2017 Oct 10.
8
Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast.
Cell Syst. 2017 May 24;4(5):495-504.e5. doi: 10.1016/j.cels.2017.03.003. Epub 2017 Mar 29.
9
Graph's Topology and Free Energy of a Spin Model on the Graph.
Phys Rev Lett. 2017 Feb 24;118(8):088302. doi: 10.1103/PhysRevLett.118.088302.
10
Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability.
Science. 2017 Feb 24;355(6327). doi: 10.1126/science.aai7825.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验