Suppr超能文献

发热性中性粒细胞减少症癌症患者的细菌谱及抗菌药物耐药模式

Bacterial Spectrum and Antimicrobial Resistance Pattern in Cancer Patients with Febrile Neutropenia.

作者信息

Vahedian-Ardakani Hassan Ali, Moghimi Mansour, Shayestehpour Mohammad, Doosti Masoud, Amid Nakisa

机构信息

Department of Internal Medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Department of Pathology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

出版信息

Asian Pac J Cancer Prev. 2019 May 25;20(5):1471-1474. doi: 10.31557/APJCP.2019.20.5.1471.

Abstract

Background: Bacterial bloodstream infections are one of the most common complications in cancer patients under treatment. Bacteremia in these patients is a medical crisis that needs antibiotic treatment. The aim of this study was to determine bacterial spectrum and antimicrobial resistance pattern in febrile neutropenic cancer patients. Methods: In this prospective study, 212 cancer patients with febrile neutropenia who were referred to Shahid Sadoughi hospital in Yazd from 2012 to 2015 were participated. Bacterial pathogens isolated by the BACTEC media and antimicrobial susceptibility tests performed according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: The mean age of patients was 43.5 ± 24.98 years old. Out of 212 participants, 62.3℅ (132/212) were suffering from hematologic malignancies, and 37.7℅ (80/212) had solid tumors. Gram-negative bacteria were the predominant microorganisms (84.9℅). E.coli was the most frequently isolated pathogen (38.68 %), followed by Klebsiella (14.15℅) and Acinetobacter species (11.32℅). In addition, Staphylococcus epidermidis was the most common isolated Gram-positive bacteria (8.5℅). Gram-negative bacteria were susceptible to ciprofloxacin with a response range of 53.7% to 100%. The majority of E.coli isolates were sensitive to ceftazidime (87.8℅) and were resistance to Co-trimoxazole (15.8℅). Klebsiella isolates were 100% susceptible to cephalosporins, meropenem and imipenem. Conclusion: The majority of bacterial pathogens were resistance to various antibiotics. Judicious use of antibiotic therapy can prevent the emergence and spread of antibiotic-resistant Gram-negative bacteria.

摘要

背景

细菌血流感染是正在接受治疗的癌症患者最常见的并发症之一。这些患者的菌血症是需要抗生素治疗的医疗危机。本研究的目的是确定发热性中性粒细胞减少癌症患者的细菌谱和抗菌耐药模式。方法:在这项前瞻性研究中,纳入了2012年至2015年转诊至亚兹德沙希德萨杜基医院的212例发热性中性粒细胞减少癌症患者。通过BACTEC培养基分离细菌病原体,并根据临床和实验室标准协会(CLSI)指南进行抗菌药敏试验。结果:患者的平均年龄为43.5±24.98岁。在212名参与者中,62.3%(132/212)患有血液系统恶性肿瘤,37.7%(80/212)患有实体瘤。革兰氏阴性菌是主要的微生物(84.9%)。大肠杆菌是最常分离出的病原体(38.68%),其次是克雷伯菌(14.15%)和不动杆菌属(11.32%)。此外,表皮葡萄球菌是最常见的分离出的革兰氏阳性菌(8.5%)。革兰氏阴性菌对环丙沙星敏感,反应范围为53.7%至100%。大多数大肠杆菌分离株对头孢他啶敏感(87.8%),对复方新诺明耐药(15.8%)。克雷伯菌分离株对头孢菌素、美罗培南和亚胺培南100%敏感。结论:大多数细菌病原体对各种抗生素耐药。明智地使用抗生素治疗可以预防耐抗生素革兰氏阴性菌的出现和传播。

相似文献

1
Bacterial Spectrum and Antimicrobial Resistance Pattern in Cancer Patients with Febrile Neutropenia.
Asian Pac J Cancer Prev. 2019 May 25;20(5):1471-1474. doi: 10.31557/APJCP.2019.20.5.1471.
8
Bacteremia in febrile cancer patients in Uganda.
BMC Res Notes. 2019 Jul 30;12(1):464. doi: 10.1186/s13104-019-4520-9.

引用本文的文献

本文引用的文献

2
Bloodstream infections in neutropenic cancer patients: A practical update.
Virulence. 2016 Apr 2;7(3):280-97. doi: 10.1080/21505594.2016.1156821.
3
Results of high-risk neutropenia therapy of hematology-oncology patients in a university hospital in Uruguay.
Rev Bras Hematol Hemoter. 2015 Jan-Feb;37(1):28-33. doi: 10.1016/j.bjhh.2014.11.012. Epub 2014 Nov 21.
6
Evidence-based guidelines for empirical therapy of neutropenic fever in Korea.
Korean J Intern Med. 2011 Jun;26(2):220-52. doi: 10.3904/kjim.2011.26.2.220. Epub 2011 Jun 1.
8
Bacteremia in patients with febrile neutropenia after chemotherapy at a university medical center in Malaysia.
Int J Infect Dis. 2007 Nov;11(6):513-7. doi: 10.1016/j.ijid.2007.02.002. Epub 2007 Apr 24.
9
Microbiological data for patients with febrile neutropenia.
Clin Infect Dis. 2004 Jul 15;39 Suppl 1:S7-S10. doi: 10.1086/383042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验