Instituto de Matemática Aplicada San Luis (IMASL), UNSL-CONICET, San Luis, Argentina.
IICB-CONICET & Facultad de Ciencias Exactas y Naturales (FCEN), UNCuyo, Mendoza, Argentina.
J Colloid Interface Sci. 2019 Sep 15;552:701-711. doi: 10.1016/j.jcis.2019.05.087. Epub 2019 May 30.
The mechanism that arginine-rich cell penetrating peptides (ARCPPs) use to translocate lipid membranes is not entirely understood. In the present work, we develop a molecular theory that allows to investigate the adsorption and insertion of ARCPPs on membranes bearing hydrophilic pores. This method accounts for size, shape, conformation, protonation state and charge distribution of the peptides; it also describes the state of protonation of acidic membrane lipids. We present a systematic investigation of the effect of pore size, peptide concentration and sequence length on the extent of peptide adsorption and insertion into the pores. We show that adsorption on the intact (non-porated) lipid membrane plays a key role on peptide translocation. For peptides shorter than nona-arginine, adsorption on the intact membrane increases significantly with chain length, but it saturates for longer peptides. However, this adsorption behavior only occurs at relatively low peptide concentrations; increasing peptide concentration favors adsorption of the shorter molecules. Adsorption of longer peptides increases the intact membrane negative charge as a result of further deprotonation of acidic lipids. Peptide insertion into the pores depends non-monotonically on pore radius, which reflects the short range nature of the effective membrane-peptide interactions. The size of the pore that promotes maximum adsorption depends on the peptide chain length. Peptide translocation is a thermally activated process, so we complement our thermodynamic approach with a simple kinetic model that allows to rationalize the ARCPPs translocation rate in terms of the free energy gain of adsorption, and the energy cost of creating a transmembrane pore with peptides in it. Our results indicate that strategies to improve translocation efficiency should focus on enhancing peptide adsorption.
精氨酸丰富的细胞穿透肽(ARCPPs)穿过脂质膜的机制尚未完全阐明。在本工作中,我们开发了一种分子理论,该理论可用于研究带亲水孔的膜上 ARCPPs 的吸附和插入。该方法考虑了肽的大小、形状、构象、质子化状态和电荷分布;它还描述了酸性膜脂的质子化状态。我们系统地研究了孔径、肽浓度和序列长度对肽吸附和插入孔中的程度的影响。我们表明,在完整(未穿孔)脂质膜上的吸附对肽转位起着关键作用。对于短于九聚精氨酸的肽,吸附在完整的膜上随链长显著增加,但对于较长的肽则达到饱和。然而,这种吸附行为仅在相对较低的肽浓度下发生;增加肽浓度有利于较短分子的吸附。由于酸性脂质的进一步去质子化,较长肽的吸附增加了完整膜的负电荷。肽插入孔取决于孔半径的非单调依赖性,这反映了有效膜-肽相互作用的短程性质。促进最大吸附的孔的大小取决于肽链的长度。肽转运是一个热激活过程,因此我们用一个简单的动力学模型补充了我们的热力学方法,该模型可以根据吸附的自由能增益以及肽在其中形成跨膜孔的能量成本来合理化 ARCPPs 转运速率。我们的结果表明,提高转运效率的策略应侧重于增强肽吸附。