Suppr超能文献

钙依赖性脂肽抗生素:结构、作用机制与药物化学

The calcium-dependent lipopeptide antibiotics: structure, mechanism, & medicinal chemistry.

作者信息

Wood Thomas M, Martin Nathaniel I

机构信息

Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands.

Biological Chemistry Group , Institute of Biology Leiden , Leiden University , Sylvius Laboratories , Sylviusweg 72 , 2333 BE Leiden , The Netherlands . Email:

出版信息

Medchemcomm. 2019 Mar 21;10(5):634-646. doi: 10.1039/c9md00126c. eCollection 2019 May 1.

Abstract

To push back the growing tide of antibacterial resistance the discovery and development of new antibiotics is a must. In recent years the calcium-dependent lipopeptide antibiotics (CDAs) have emerged as a potential source of new antibacterial agents rich in structural and mechanistic diversity. All CDAs share a common lipidated cyclic peptide motif containing amino acid side chains that specifically chelate calcium. It is only in the calcium bound state that the CDAs achieve their potent antibacterial activities. Interestingly, despite their common structural features, the mechanisms by which different CDAs target bacteria can vary dramatically. This review provides both a historic context for the CDAs while also addressing the state of the art with regards to their discovery, optimization, and antibacterial mechanisms.

摘要

为了击退日益增长的抗菌耐药性浪潮,必须发现和开发新的抗生素。近年来,钙依赖性脂肽抗生素(CDAs)已成为一种潜在的新型抗菌剂来源,其结构和作用机制具有丰富的多样性。所有CDAs都有一个共同的脂化环肽基序,其氨基酸侧链能特异性螯合钙。只有在与钙结合的状态下,CDAs才能发挥其强大的抗菌活性。有趣的是,尽管它们具有共同的结构特征,但不同CDAs靶向细菌的机制可能有很大差异。本综述既为CDAs提供了历史背景,也探讨了它们在发现、优化和抗菌机制方面的最新进展。

相似文献

1
The calcium-dependent lipopeptide antibiotics: structure, mechanism, & medicinal chemistry.
Medchemcomm. 2019 Mar 21;10(5):634-646. doi: 10.1039/c9md00126c. eCollection 2019 May 1.
4
The structural diversity of acidic lipopeptide antibiotics.
Chembiochem. 2009 Mar 2;10(4):607-16. doi: 10.1002/cbic.200800546.
6
Chalcone derivatives and their antibacterial activities: Current development.
Bioorg Chem. 2019 Oct;91:103133. doi: 10.1016/j.bioorg.2019.103133. Epub 2019 Jul 19.
7
Discovery, Synthesis, and Optimization of Peptide-Based Antibiotics.
Acc Chem Res. 2021 Apr 20;54(8):1878-1890. doi: 10.1021/acs.accounts.0c00841. Epub 2021 Mar 22.
8
Dilarmycins A-C, Calcium-Dependent Lipopeptide Antibiotics with a Non-canonical Ca-Binding Motif.
Org Lett. 2024 Feb 23;26(7):1343-1347. doi: 10.1021/acs.orglett.3c04195. Epub 2024 Feb 8.
10
Antibacterial efficacy and membrane mechanism of action of the -derived non-ionic lipopeptide, serrawettin W2-FL10.
Microbiol Spectr. 2024 Jul 2;12(7):e0295223. doi: 10.1128/spectrum.02952-23. Epub 2024 Jun 6.

引用本文的文献

1
Genomic insights into an endophytic sp. VITGV156 for antimicrobial compounds.
Front Microbiol. 2024 Jun 3;15:1407289. doi: 10.3389/fmicb.2024.1407289. eCollection 2024.
2
Antibacterial efficacy and membrane mechanism of action of the -derived non-ionic lipopeptide, serrawettin W2-FL10.
Microbiol Spectr. 2024 Jul 2;12(7):e0295223. doi: 10.1128/spectrum.02952-23. Epub 2024 Jun 6.
4
Antibiotics and Antibiotic Resistance-Mur Ligases as an Antibacterial Target.
Molecules. 2023 Dec 13;28(24):8076. doi: 10.3390/molecules28248076.
5
A Boron-Dependent Antibiotic Derived from a Calcium-Dependent Antibiotic.
Angew Chem Int Ed Engl. 2024 Jan 25;63(5):e202317522. doi: 10.1002/anie.202317522. Epub 2023 Dec 27.
6
Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry.
Nat Rev Chem. 2023 Oct;7(10):710-731. doi: 10.1038/s41570-023-00532-8. Epub 2023 Sep 19.
7
A Highly Efficacious Electrical Biofilm Treatment System for Combating Chronic Wound Bacterial Infections.
Adv Mater. 2023 Feb;35(6):e2208069. doi: 10.1002/adma.202208069. Epub 2022 Dec 20.
10
Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort.
Microbiology (Reading). 2022 Feb;168(2). doi: 10.1099/mic.0.001136.

本文引用的文献

1
Cadasides, Calcium-Dependent Acidic Lipopeptides from the Soil Metagenome That Are Active against Multidrug-Resistant Bacteria.
J Am Chem Soc. 2019 Mar 6;141(9):3910-3919. doi: 10.1021/jacs.8b12087. Epub 2019 Feb 20.
2
Methicillin-resistant tracking spread among health-care workers and hospitalized patients in critical wards at a university hospital, Tehran, Iran.
New Microbes New Infect. 2018 Nov 16;27:29-35. doi: 10.1016/j.nmni.2018.11.003. eCollection 2019 Jan.
3
Colistin resistance prevalence in Escherichia coli from domestic animals in intensive breeding farms of Jiangsu Province.
Int J Food Microbiol. 2019 Feb 16;291:87-90. doi: 10.1016/j.ijfoodmicro.2018.11.013. Epub 2018 Nov 22.
4
β-lactam/β-lactamase inhibitor combinations: an update.
Medchemcomm. 2018 Aug 17;9(9):1439-1456. doi: 10.1039/c8md00342d. eCollection 2018 Sep 1.
5
Mechanistic studies on the effect of membrane lipid acyl chain composition on daptomycin pore formation.
Chem Phys Lipids. 2018 Nov;216:73-79. doi: 10.1016/j.chemphyslip.2018.09.015. Epub 2018 Sep 29.
6
Crystallomycin revisited after 60 years: aspartocins B and C.
Medchemcomm. 2018 Feb 27;9(4):667-675. doi: 10.1039/c8md00002f. eCollection 2018 Apr 1.
7
Synthesis and evaluation of analogues of the glycinocin family of calcium-dependent antibiotics.
Org Biomol Chem. 2018 Jul 25;16(29):5310-5320. doi: 10.1039/c8ob01268g.
10
Isolation and structure elucidation of lipopeptide antibiotic taromycin B from the activated taromycin biosynthetic gene cluster.
J Antibiot (Tokyo). 2018 Feb;71(2):333-338. doi: 10.1038/ja.2017.146. Epub 2017 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验