Suppr超能文献

静脉和动脉组织工程血管移植物的不同结果突出了将长期植入研究与计算建模相结合的重要性。

Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling.

机构信息

Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, United States.

Department of Biomedical Engineering, Yale University, New Haven, CT, United States.

出版信息

Acta Biomater. 2019 Aug;94:183-194. doi: 10.1016/j.actbio.2019.05.063. Epub 2019 Jun 12.

Abstract

Electrospinning is commonly used to generate polymeric scaffolds for tissue engineering. Using this approach, we developed a small-diameter tissue engineered vascular graft (TEVG) composed of poly-ε-caprolactone-co-l-lactic acid (PCLA) fibers and longitudinally assessed its performance within both the venous and arterial circulations of immunodeficient (SCID/bg) mice. Based on in vitro analysis demonstrating complete loss of graft strength by 12 weeks, we evaluated neovessel formation in vivo over 6-, 12- and 24-week periods. Mid-term observations indicated physiologic graft function, characterized by 100% patency and luminal matching with adjoining native vessel in both the venous and arterial circulations. An active and robust remodeling process was characterized by a confluent endothelial cell monolayer, macrophage infiltrate, and extracellular matrix deposition and remodeling. Long-term follow-up of venous TEVGs at 24 weeks revealed viable neovessel formation beyond graft degradation when implanted in this high flow, low-pressure environment. Arterial TEVGs experienced catastrophic graft failure due to aneurysmal dilatation and rupture after 14 weeks. Scaffold parameters such as porosity, fiber diameter, and degradation rate informed a previously described computational model of vascular growth and remodeling, and simulations predicted the gross differential performance of the venous and arterial TEVGs over the 24-week time course. Taken together, these results highlight the requirement for in vivo implantation studies to extend past the critical time period of polymer degradation, the importance of differential neotissue deposition relative to the mechanical (pressure) environment, and further support the utility of predictive modeling in the design, use, and evaluation of TEVGs in vivo. STATEMENT OF SIGNIFICANCE: Herein, we apply a biodegradable electrospun vascular graft to the arterial and venous circulations of the mouse and follow recipients beyond the point of polymer degradation. While venous implants formed viable neovessels, arterial grafts experienced catastrophic rupture due to aneurysmal dilation. We then inform a previously developed computational model of tissue engineered vascular graft growth and remodeling with parameters specific to the electrospun scaffolds utilized in this study. Remarkably, model simulations predict the differential performance of the venous and arterial constructs over 24 weeks. We conclude that computational simulations should inform the rational selection of scaffold parameters to fabricate tissue engineered vascular grafts that must be followed in vivo over time courses extending beyond polymer degradation.

摘要

静电纺丝通常用于生成用于组织工程的聚合物支架。我们使用这种方法开发了一种小直径组织工程血管移植物 (TEVG),由聚己内酯-共聚-左旋乳酸 (PCLA) 纤维组成,并在免疫缺陷 (SCID/bg) 小鼠的静脉和动脉循环中对其性能进行了纵向评估。基于体外分析表明,移植物强度在 12 周内完全丧失,我们在 6、12 和 24 周期间评估了体内新血管的形成。中期观察表明,静脉和动脉循环中的生理移植物功能正常,表现为 100%通畅,管腔与毗邻的天然血管匹配。一个活跃和强大的重塑过程的特征是连续的内皮细胞单层、巨噬细胞浸润以及细胞外基质的沉积和重塑。静脉 TEVG 在 24 周的长期随访中,在高流量、低压力环境中植入时,发现移植物降解后仍有可行的新血管形成。动脉 TEVG 在 14 周后由于动脉瘤扩张和破裂而发生灾难性的移植物失败。支架参数,如孔隙率、纤维直径和降解率,为先前描述的血管生长和重塑的计算模型提供了信息,模拟预测了静脉和动脉 TEVG 在 24 周时间过程中的总体差异性能。综上所述,这些结果强调了需要进行体内植入研究,以延长聚合物降解的关键时间点,需要考虑相对于机械(压力)环境的新组织沉积的差异,并且进一步支持预测模型在设计、使用和评估体内组织工程血管移植物中的效用。 意义声明:本文中,我们将可生物降解的静电纺血管移植物应用于小鼠的动静脉循环,并在聚合物降解点之外对接受者进行随访。虽然静脉植入物形成了可行的新血管,但动脉移植物由于动脉瘤扩张而发生灾难性破裂。然后,我们使用本研究中使用的静电纺支架的特定参数为先前开发的组织工程血管移植物生长和重塑的计算模型提供信息。值得注意的是,模型模拟预测了静脉和动脉结构在 24 周内的差异性能。我们得出结论,计算模拟应该为支架参数的合理选择提供信息,以制造必须在延长聚合物降解时间的时间过程中在体内进行跟踪的组织工程血管移植物。

相似文献

2
Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft.
J Vasc Surg. 2015 Sep;62(3):734-43. doi: 10.1016/j.jvs.2014.03.011. Epub 2014 Apr 16.
3
Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis.
Acta Biomater. 2020 Mar 15;105:146-158. doi: 10.1016/j.actbio.2020.01.020. Epub 2020 Jan 17.
5
Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model.
PLoS One. 2016 Jul 28;11(7):e0158555. doi: 10.1371/journal.pone.0158555. eCollection 2016.
6
Fast-Degrading Tissue-Engineered Vascular Grafts Lead to Increased Extracellular Matrix Cross-Linking Enzyme Expression.
Tissue Eng Part A. 2021 Nov;27(21-22):1368-1375. doi: 10.1089/ten.TEA.2020.0266. Epub 2021 Aug 18.
7
Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model.
J Thorac Cardiovasc Surg. 2017 Apr;153(4):924-932. doi: 10.1016/j.jtcvs.2016.10.066. Epub 2016 Nov 14.
8
Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts.
Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044. Epub 2017 Jun 13.
10
Implanted Tissue-Engineered Vascular Graft Cell Isolation with Single-Cell RNA Sequencing Analysis.
Tissue Eng Part C Methods. 2023 Feb;29(2):72-84. doi: 10.1089/ten.TEC.2022.0189.

引用本文的文献

1
Constrained optimization of scaffold behavior for improving tissue engineered vascular grafts.
J Biomech. 2025 Jun;186:112670. doi: 10.1016/j.jbiomech.2025.112670. Epub 2025 Apr 18.
3
Hemodynamics and Wall Mechanics of Vascular Graft Failure.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
4
Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering.
Polymers (Basel). 2023 Apr 24;15(9):2015. doi: 10.3390/polym15092015.
5
Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations.
Front Bioeng Biotechnol. 2023 Jan 10;10:1097334. doi: 10.3389/fbioe.2022.1097334. eCollection 2022.
7
Systematic Review of Tissue-Engineered Vascular Grafts.
Front Bioeng Biotechnol. 2021 Nov 3;9:771400. doi: 10.3389/fbioe.2021.771400. eCollection 2021.
8
Zoledronate alters natural progression of tissue-engineered vascular grafts.
FASEB J. 2021 Oct;35(10):e21849. doi: 10.1096/fj.202001606RR.
10
In Situ Heart Valve Tissue Engineering: Is Scaffold Structural Biomimicry Overrated?
JACC Basic Transl Sci. 2020 Dec 28;5(12):1207-1209. doi: 10.1016/j.jacbts.2020.11.009. eCollection 2020 Dec.

本文引用的文献

1
A Mechanobiologically Equilibrated Constrained Mixture Model for Growth and Remodeling of Soft Tissues.
Z Angew Math Mech. 2018 Dec;98(12):2048-2071. doi: 10.1002/zamm.201700302. Epub 2018 Mar 23.
2
Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts.
Ann Biomed Eng. 2018 Nov;46(11):1938-1950. doi: 10.1007/s10439-018-2086-7. Epub 2018 Jul 9.
3
Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning.
Ann Biomed Eng. 2018 Sep;46(9):1254-1266. doi: 10.1007/s10439-018-2065-z. Epub 2018 May 29.
5
The grafts modified by heparinization and catalytic nitric oxide generation used for vascular implantation in rats.
Regen Biomater. 2018 Mar;5(2):105-114. doi: 10.1093/rb/rby003. Epub 2018 Mar 6.
6
Regulation of macrophage polarization and promotion of endothelialization by NO generating and PEG-YIGSR modified vascular graft.
Mater Sci Eng C Mater Biol Appl. 2018 Mar 1;84:1-11. doi: 10.1016/j.msec.2017.11.005. Epub 2017 Nov 11.
7
The regeneration of macro-porous electrospun poly(ɛ-caprolactone) vascular graft during long-term in situ implantation.
J Biomed Mater Res B Appl Biomater. 2018 May;106(4):1618-1627. doi: 10.1002/jbm.b.33967. Epub 2017 Aug 22.
9
In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF.
Int J Surg. 2017 Aug;44:244-249. doi: 10.1016/j.ijsu.2017.06.077. Epub 2017 Jun 22.
10
Electrospun vascular scaffold for cellularized small diameter blood vessels: A preclinical large animal study.
Acta Biomater. 2017 Sep 1;59:58-67. doi: 10.1016/j.actbio.2017.06.027. Epub 2017 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验