Suppr超能文献

线粒体代谢的不同模式可分离 T 细胞分化和功能。

Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function.

机构信息

Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.

Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

出版信息

Nature. 2019 Jul;571(7765):403-407. doi: 10.1038/s41586-019-1311-3. Epub 2019 Jun 19.

Abstract

Activated CD4 T cells proliferate rapidly and remodel epigenetically before exiting the cell cycle and engaging acquired effector functions. Metabolic reprogramming from the naive state is required throughout these phases of activation. In CD4 T cells, T-cell-receptor ligation-along with co-stimulatory and cytokine signals-induces a glycolytic anabolic program that is required for biomass generation, rapid proliferation and effector function. CD4 T cell differentiation (proliferation and epigenetic remodelling) and function are orchestrated coordinately by signal transduction and transcriptional remodelling. However, it remains unclear whether these processes are regulated independently of one another by cellular biochemical composition. Here we demonstrate that distinct modes of mitochondrial metabolism support differentiation and effector functions of mouse T helper 1 (T1) cells by biochemically uncoupling these two processes. We find that the tricarboxylic acid cycle is required for the terminal effector function of T1 cells through succinate dehydrogenase (complex II), but that the activity of succinate dehydrogenase suppresses T1 cell proliferation and histone acetylation. By contrast, we show that complex I of the electron transport chain, the malate-aspartate shuttle and mitochondrial citrate export are required to maintain synthesis of aspartate, which is necessary for the proliferation of T helper cells. Furthermore, we find that mitochondrial citrate export and the malate-aspartate shuttle promote histone acetylation, and specifically regulate the expression of genes involved in T cell activation. Combining genetic, pharmacological and metabolomics approaches, we demonstrate that the differentiation and terminal effector functions of T helper cells are biochemically uncoupled. These findings support a model in which the malate-aspartate shuttle, mitochondrial citrate export and complex I supply the substrates needed for proliferation and epigenetic remodelling early during T cell activation, whereas complex II consumes the substrates of these pathways, which antagonizes differentiation and enforces terminal effector function. Our data suggest that transcriptional programming acts together with a parallel biochemical network to enforce cell state.

摘要

活化的 CD4 T 细胞在退出细胞周期并获得获得性效应功能之前,会迅速增殖并重塑表观遗传。在这些激活阶段,从幼稚状态进行代谢重编程是必需的。在 CD4 T 细胞中,T 细胞受体的结合——以及共刺激和细胞因子信号——诱导一种糖酵解合成代谢程序,这是生成生物量、快速增殖和效应功能所必需的。CD4 T 细胞的分化(增殖和表观遗传重塑)和功能是由信号转导和转录重塑协调控制的。然而,目前尚不清楚这些过程是否独立于细胞生化组成而受到调节。在这里,我们通过生化方法将这两个过程解耦,证明了不同的线粒体代谢模式通过生物化学方法支持小鼠辅助性 T 细胞 1(T1)细胞的分化和效应功能。我们发现三羧酸循环通过琥珀酸脱氢酶(复合物 II)对 T1 细胞的终末效应功能是必需的,但复合物 II 的活性抑制 T1 细胞的增殖和组蛋白乙酰化。相比之下,我们表明电子传递链的复合物 I、苹果酸-天冬氨酸穿梭和线粒体柠檬酸输出对于维持天冬氨酸的合成是必需的,而天冬氨酸的合成对于辅助性 T 细胞的增殖是必需的。此外,我们发现线粒体柠檬酸输出和苹果酸-天冬氨酸穿梭促进组蛋白乙酰化,并特异性调节与 T 细胞激活相关的基因的表达。通过结合遗传、药理学和代谢组学方法,我们证明了辅助性 T 细胞的分化和终末效应功能在生物化学上是解耦的。这些发现支持了一种模型,即苹果酸-天冬氨酸穿梭、线粒体柠檬酸输出和复合物 I 提供 T 细胞激活早期增殖和表观遗传重塑所需的底物,而复合物 II 消耗这些途径的底物,这拮抗分化并强制执行终末效应功能。我们的数据表明,转录编程与平行的生化网络一起作用,以强制细胞状态。

相似文献

1
Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function.
Nature. 2019 Jul;571(7765):403-407. doi: 10.1038/s41586-019-1311-3. Epub 2019 Jun 19.
2
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
Nature. 2014 Nov 20;515(7527):431-435. doi: 10.1038/nature13909. Epub 2014 Nov 5.
5
SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.
EMBO J. 2015 Apr 15;34(8):1110-25. doi: 10.15252/embj.201591041. Epub 2015 Mar 9.
9
Homing to nonlymphoid tissues is not necessary for effector Th1 cell differentiation.
J Immunol. 2003 Dec 15;171(12):6355-62. doi: 10.4049/jimmunol.171.12.6355.

引用本文的文献

1
Mitochondrial metabolism and cancer therapeutic innovation.
Signal Transduct Target Ther. 2025 Aug 4;10(1):245. doi: 10.1038/s41392-025-02311-x.
2
Regulation of CD4 + T cell differentiation and function by glucose metabolism.
Genes Immun. 2025 Jul 5. doi: 10.1038/s41435-025-00340-8.
5
Mitochondrial response to fever boosts T1-driven inflammatory responses.
Immunometabolism (Cobham). 2025 Mar 13;7(2):e00058. doi: 10.1097/IN9.0000000000000058. eCollection 2025 Apr.
7
Type 2 immunity in allergic diseases.
Cell Mol Immunol. 2025 Mar;22(3):211-242. doi: 10.1038/s41423-025-01261-2. Epub 2025 Feb 17.
8
ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance.
Mol Metab. 2025 Apr;94:102111. doi: 10.1016/j.molmet.2025.102111. Epub 2025 Feb 8.
9
CAR-T Therapy Beyond B-Cell Hematological Malignancies.
Cells. 2025 Jan 3;14(1):41. doi: 10.3390/cells14010041.
10
Dietary Restriction Enhances CD8 T Cell Ketolysis to Limit Exhaustion and Boost Anti-Tumor Immunity.
bioRxiv. 2024 Nov 15:2024.11.14.621733. doi: 10.1101/2024.11.14.621733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验