From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY.
Circ Res. 2019 Jun 21;125(1):117-146. doi: 10.1161/CIRCRESAHA.119.311148. Epub 2019 Jun 20.
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
细胞外基质(ECM)网络在心脏稳态中起着至关重要的作用,不仅提供结构支持,还促进力的传递,并向心肌细胞、血管细胞和间质细胞转导关键信号。ECM 组成和生物化学的变化可能与射血分数降低的心力衰竭和射血分数保留的心力衰竭的发病机制密切相关。衰竭心脏中 ECM 的分子和生化改变模式取决于潜在损伤的类型。压力超负荷早期激活心肌成纤维细胞中的基质合成程序,诱导肌成纤维细胞转化,并刺激结构和基质细胞 ECM 蛋白的合成。心脏 ECM 的扩张可能会增加心肌硬度,促进舒张功能障碍。通过机械敏感途径或神经激素介质激活的心肌细胞、血管细胞和免疫细胞可能通过分泌细胞因子和生长因子在成纤维细胞激活中发挥关键作用。持续的压力超负荷导致扩张性重构和收缩功能障碍,这可能是通过间质蛋白酶/抗蛋白酶平衡的变化介导的。另一方面,缺血性损伤引起心脏 ECM 的动态变化,有助于调节炎症和修复,并可能介导不良的心脏重构。在其他病理生理条件下,如容量超负荷、糖尿病和肥胖,介导 ECM 重构的细胞生物学效应器了解甚少,原发性损伤与基质环境变化之间的分子联系尚不清楚。本文讨论了 ECM 大分子在心力衰竭中的作用,重点讨论了结构性 ECM 蛋白(如纤维状和非纤维状胶原)和专门的损伤相关基质大分子(如纤维连接蛋白和基质细胞蛋白)。了解 ECM 在心力衰竭中的作用可能有助于确定治疗靶点,以减少几何重构,减轻心肌细胞功能障碍,甚至促进心肌再生。