Suppr超能文献

利用组学进行哮喘表型分型。

Leveraging -omics for asthma endotyping.

机构信息

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.

出版信息

J Allergy Clin Immunol. 2019 Jul;144(1):13-23. doi: 10.1016/j.jaci.2019.05.015.

Abstract

Asthma is a highly heterogeneous disease, often manifesting with wheeze, dyspnea, chest tightness, and cough as prominent symptoms. The eliciting factors, natural history, underlying molecular biology, and clinical management of asthma vary highly among affected subjects. Because of this variation, many efforts have gone into subtyping asthma. Endotypes are subtypes of disease based on distinct pathophysiologic mechanisms. Endotypes can be clinically useful because they organize our mechanistic understanding of heterogeneous diseases and can direct treatment toward modalities that are likely to be the most effective. Asthma endotyping can be shaped by clinical features, laboratory parameters, and/or -omics approaches. We discuss the application of -omics approaches, including transcriptomics, epigenomics, microbiomics, metabolomics, and proteomics, to asthma endotyping. -Omics approaches have provided supporting evidence for many existing endotyping paradigms and also suggested novel ways to conceptualize asthma endotypes. Although endotypes based on single -omics approaches are relatively common, their integrated multi-omics application to asthma endotyping has been more limited thus far. We discuss paths forward to integrate multi-omics with clinical features and laboratory parameters to achieve the goal of precise asthma endotypes.

摘要

哮喘是一种高度异质性的疾病,常表现为喘息、呼吸困难、胸闷和咳嗽等突出症状。哮喘的诱发因素、自然病史、潜在分子生物学和临床管理在受影响的患者中差异很大。由于这种差异,人们已经做出了许多努力来对哮喘进行亚型划分。表型是基于不同病理生理机制的疾病亚型。表型可以在临床上发挥作用,因为它们可以帮助我们理解异质性疾病的机制,并指导我们针对最有可能有效的治疗方法。哮喘表型可以通过临床特征、实验室参数和/或组学方法来确定。我们讨论了组学方法(包括转录组学、表观基因组学、微生物组学、代谢组学和蛋白质组学)在哮喘表型中的应用。组学方法为许多现有的表型分类提供了支持证据,也为概念化哮喘表型提供了新的思路。尽管基于单一组学方法的表型相对常见,但迄今为止,它们在哮喘表型中的综合多组学应用还比较有限。我们讨论了将多组学与临床特征和实验室参数相结合以实现精准哮喘表型的目标的前进道路。

相似文献

1
Leveraging -omics for asthma endotyping.
J Allergy Clin Immunol. 2019 Jul;144(1):13-23. doi: 10.1016/j.jaci.2019.05.015.
2
Integrated-omics endotyping of infants with rhinovirus bronchiolitis and risk of childhood asthma.
J Allergy Clin Immunol. 2021 Jun;147(6):2108-2117. doi: 10.1016/j.jaci.2020.11.002. Epub 2020 Nov 13.
3
Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm.
J Pers Med. 2022 Jan 7;12(1):66. doi: 10.3390/jpm12010066.
4
Endotyping in Heart Failure - Identifying Mechanistically Meaningful Subtypes of Disease.
Circ J. 2021 Aug 25;85(9):1407-1415. doi: 10.1253/circj.CJ-21-0349. Epub 2021 Jun 8.
5
Leveraging Multilayered "Omics" Data for Atopic Dermatitis: A Road Map to Precision Medicine.
Front Immunol. 2018 Dec 12;9:2727. doi: 10.3389/fimmu.2018.02727. eCollection 2018.
7
Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases.
Adv Genet. 2016;93:147-90. doi: 10.1016/bs.adgen.2015.11.004. Epub 2016 Jan 25.
8
Asthma phenotypes and endotypes.
Minerva Med. 2021 Oct;112(5):547-563. doi: 10.23736/S0026-4806.21.07498-X. Epub 2021 May 10.
9
Untangling asthma phenotypes and endotypes.
Allergy. 2012 Jul;67(7):835-46. doi: 10.1111/j.1398-9995.2012.02832.x. Epub 2012 May 17.
10
Translating Asthma: Dissecting the Role of Metabolomics, Genomics and Personalized Medicine.
Indian J Pediatr. 2018 Aug;85(8):643-650. doi: 10.1007/s12098-017-2520-0. Epub 2017 Nov 29.

引用本文的文献

1
Why Every Asthma Patient Tells a Different Story.
J Clin Med. 2025 Aug 9;14(16):5641. doi: 10.3390/jcm14165641.
2
Molecular Study from the Signaling Pathways of Four Potential : AKT1, MAPK13, STAT1, and TLR4.
Int J Mol Sci. 2025 Jun 28;26(13):6240. doi: 10.3390/ijms26136240.
3
SARS-CoV-2 in Asthmatic Children: Same Consequences in Different Endotypes?
Metabolites. 2025 Jun 16;15(6):406. doi: 10.3390/metabo15060406.
4
Metabolomics in Childhood Asthma - a Promising Tool to Meet Various Clinical Needs.
Curr Allergy Asthma Rep. 2025 May 9;25(1):24. doi: 10.1007/s11882-025-01198-6.
5
Inflammatory and pulmonary function characteristics of bronchial asthma induced by COVID‑19 infection.
Biomed Rep. 2025 Apr 22;22(6):101. doi: 10.3892/br.2025.1979. eCollection 2025 Jun.
6
Sex differences in asthma: omics evidence and future directions.
Front Genet. 2025 Mar 5;16:1560276. doi: 10.3389/fgene.2025.1560276. eCollection 2025.
7
Letter to the Editor Regarding "Predicting Asthma Exacerbations Using Machine Learning Models".
Adv Ther. 2025 May;42(5):2537-2538. doi: 10.1007/s12325-025-03119-5. Epub 2025 Mar 6.
8
Microbial influencers: the airway microbiome's role in asthma.
J Clin Invest. 2025 Feb 17;135(4):e184316. doi: 10.1172/JCI184316.
9
Editorial: Multi-omics approaches in the study of human disease mechanisms.
Front Bioinform. 2025 Jan 7;4:1546680. doi: 10.3389/fbinf.2024.1546680. eCollection 2024.
10
A multi-omics Mendelian randomization identifies putatively causal genes and DNA methylation sites for asthma.
World Allergy Organ J. 2024 Dec 7;17(12):101008. doi: 10.1016/j.waojou.2024.101008. eCollection 2024 Dec.

本文引用的文献

1
Stratification of asthma phenotypes by airway proteomic signatures.
J Allergy Clin Immunol. 2019 Jul;144(1):70-82. doi: 10.1016/j.jaci.2019.03.013. Epub 2019 Mar 28.
2
A sputum 6-gene signature predicts future exacerbations of poorly controlled asthma.
J Allergy Clin Immunol. 2019 Jul;144(1):51-60.e11. doi: 10.1016/j.jaci.2018.12.1020. Epub 2019 Jan 22.
3
Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma.
J Allergy Clin Immunol. 2019 May;143(5):1811-1820.e7. doi: 10.1016/j.jaci.2018.10.058. Epub 2018 Dec 6.
4
A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma.
Am J Respir Crit Care Med. 2019 Feb 15;199(4):465-477. doi: 10.1164/rccm.201807-1291OC.
5
Multi-omic and multi-view clustering algorithms: review and cancer benchmark.
Nucleic Acids Res. 2018 Nov 16;46(20):10546-10562. doi: 10.1093/nar/gky889.
6
Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation.
J Allergy Clin Immunol. 2019 Apr;143(4):1287-1294. doi: 10.1016/j.jaci.2018.06.008. Epub 2018 Jun 19.
8
Targeting cytokines to treat asthma and chronic obstructive pulmonary disease.
Nat Rev Immunol. 2018 Jul;18(7):454-466. doi: 10.1038/s41577-018-0006-6.
9
The nasal microbiome in asthma.
J Allergy Clin Immunol. 2018 Sep;142(3):834-843.e2. doi: 10.1016/j.jaci.2018.02.020. Epub 2018 Mar 5.
10
Exhaled breath condensate metabolome clusters for endotype discovery in asthma.
J Transl Med. 2017 Dec 22;15(1):262. doi: 10.1186/s12967-017-1365-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验