Suppr超能文献

哮喘的多组学分析方法:一种不断发展的范式。

Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm.

作者信息

Gautam Yadu, Johansson Elisabet, Mersha Tesfaye B

机构信息

Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.

出版信息

J Pers Med. 2022 Jan 7;12(1):66. doi: 10.3390/jpm12010066.

Abstract

Asthma is a complex multifactorial and heterogeneous respiratory disease. Although genetics is a strong risk factor of asthma, external and internal exposures and their interactions with genetic factors also play important roles in the pathophysiology of asthma. Over the past decades, the application of high-throughput omics approaches has emerged and been applied to the field of asthma research for screening biomarkers such as genes, transcript, proteins, and metabolites in an unbiased fashion. Leveraging large-scale studies representative of diverse population-based omics data and integrating with clinical data has led to better profiling of asthma risk. Yet, to date, no omic-driven endotypes have been translated into clinical practice and management of asthma. In this article, we provide an overview of the current status of omics studies of asthma, namely, genomics, transcriptomics, epigenomics, proteomics, exposomics, and metabolomics. The current development of the multi-omics integrations of asthma is also briefly discussed. Biomarker discovery following multi-omics profiling could be challenging but useful for better disease phenotyping and endotyping that can translate into advances in asthma management and clinical care, ultimately leading to successful precision medicine approaches.

摘要

哮喘是一种复杂的多因素且异质性的呼吸系统疾病。尽管遗传学是哮喘的一个重要危险因素,但外部和内部暴露及其与遗传因素的相互作用在哮喘的病理生理学中也起着重要作用。在过去几十年中,高通量组学方法应运而生,并被应用于哮喘研究领域,以无偏倚的方式筛选基因、转录本、蛋白质和代谢物等生物标志物。利用代表不同人群组学数据的大规模研究,并与临床数据相结合,有助于更好地描绘哮喘风险。然而,迄今为止,尚无基于组学的内型分类应用于哮喘的临床实践和管理。在本文中,我们概述了哮喘组学研究的现状,即基因组学、转录组学、表观基因组学、蛋白质组学、暴露组学和代谢组学。我们还简要讨论了哮喘多组学整合的当前进展。多组学分析后的生物标志物发现可能具有挑战性,但有助于更好地进行疾病表型分析和内型分类,从而推动哮喘管理和临床护理的进步,最终实现成功的精准医学方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29f1/8778153/362f18c6a63f/jpm-12-00066-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验