From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.
Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
J Intern Med. 2019 Sep;286(3):268-289. doi: 10.1111/joim.12957. Epub 2019 Jul 29.
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of T 1-mediated immunity but also as drivers of T 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
宿主进化出冗余机制来维持生理处理和内稳态。这些功能包括感知内部和外部威胁、对损伤产生记忆并产生反射,以解决炎症。这些功能的损伤会导致慢性炎症性疾病。免疫和感觉神经系统通过共同的配体和受体语言相互作用,协同完成这种保护功能。虽然这种双向通讯有助于防止危险,但它也可能导致疾病的病理生理学。因此,躯体感觉神经系统在原发性和继发性淋巴组织和黏膜中具有解剖位置,可直接调节免疫。在这种相互作用的上游,神经元检测到危险,促使神经肽释放,从而引发(i)防御反射(从退缩反应到咳嗽)和(ii)趋化性、黏附和免疫细胞的局部浸润。这种神经免疫相互作用的结果仍不明确,但共识性研究结果开始出现,并支持神经肽不仅是 T1 介导免疫的阻滞剂,也是 T2 免疫反应的驱动因素。然而,伤害感受器检测到的模式不仅包括机械压力和温度感应,还包括细胞因子和病原体等各种信号,以及免疫球蛋白甚至 microRNA。基于这些,我们汇总了各种背根神经节感觉神经元表达谱数据集,以支持这些广泛的传感能力,帮助识别这些细胞的新危险检测模式。因此,揭示伤害感受器神经元生物学的意外方面可能会促使人们发现新的免疫驱动因素、解决炎症的方法和维持内稳态的策略。