Suppr超能文献

利用[具体内容未给出]作为从天然产物中发现帕金森病药物的平台。

Using as a platform for drug discovery from natural products in Parkinson's disease.

作者信息

Maitra Urmila, Ciesla Lukasz

机构信息

Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2320, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . Email:

Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2329, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . Email:

出版信息

Medchemcomm. 2019 Apr 30;10(6):867-879. doi: 10.1039/c9md00099b. eCollection 2019 Jun 1.

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with no cure. Despite intensive research, most of the currently available therapies are only effective in alleviating symptoms with no effect on disease progression. There is an urgent need for new therapeutics to impede disease progression. Natural products are valuable sources of bioactive compounds that can be exploited for novel therapeutic potential in PD pathogenesis. However, rapid screening of plant-derived natural products and characterization of bioactive compounds is costly and challenging. , commonly known as the fruit fly, has recently emerged as an excellent model for human neurodegenerative diseases, including PD. The high degree of conserved molecular pathways with mammalian models make PD models an inexpensive solution to preliminary phases of target validation in the drug discovery pipeline. The present review provides an overview of drug discovery from natural extracts using as a screening platform to evaluate the therapeutic potential of phytochemicals against PD.

摘要

帕金森病(PD)是一种无法治愈的进行性神经退行性运动障碍。尽管进行了深入研究,但目前大多数可用疗法仅能有效缓解症状,对疾病进展并无作用。迫切需要新的治疗方法来阻止疾病进展。天然产物是生物活性化合物的宝贵来源,可用于帕金森病发病机制中的新型治疗潜力研究。然而,快速筛选植物来源的天然产物并鉴定生物活性化合物成本高昂且具有挑战性。果蝇,通常被称为果蝇,最近已成为包括帕金森病在内的人类神经退行性疾病的优秀模型。与哺乳动物模型高度保守的分子途径使果蝇帕金森病模型成为药物发现流程中靶点验证初步阶段的廉价解决方案。本综述概述了以果蝇为筛选平台从天然提取物中进行药物发现,以评估植物化学物质对帕金森病的治疗潜力。

相似文献

1
Using as a platform for drug discovery from natural products in Parkinson's disease.
Medchemcomm. 2019 Apr 30;10(6):867-879. doi: 10.1039/c9md00099b. eCollection 2019 Jun 1.
2
Exploring the Efficient Natural Products for the Therapy of Parkinson's Disease (Fruit Fly) Models.
Curr Drug Targets. 2024;25(2):77-93. doi: 10.2174/0113894501281402231218071641.
3
Using as a suitable platform for drug discovery from natural products in inflammatory bowel disease.
Front Pharmacol. 2022 Dec 5;13:1072715. doi: 10.3389/fphar.2022.1072715. eCollection 2022.
5
Plant Extracts and Phytochemicals Targeting -Synuclein Aggregation in Parkinson's Disease Models.
Front Pharmacol. 2019 Mar 19;9:1555. doi: 10.3389/fphar.2018.01555. eCollection 2018.
6
Non-mammalian animal models of Parkinson's disease for drug discovery.
Expert Opin Drug Discov. 2010 Feb;5(2):165-76. doi: 10.1517/17460440903527675. Epub 2010 Jan 5.
7
Exploring the efficient natural products for Alzheimer's disease therapy via (fruit fly) models.
J Drug Target. 2023 Sep;31(8):817-831. doi: 10.1080/1061186X.2023.2245582. Epub 2023 Aug 10.
8
Unveiling Nature's potential: Promising natural compounds in Parkinson's disease management.
Parkinsonism Relat Disord. 2023 Oct;115:105799. doi: 10.1016/j.parkreldis.2023.105799. Epub 2023 Aug 10.
9
Parkinson's Disease Model.
Adv Exp Med Biol. 2018;1076:41-61. doi: 10.1007/978-981-13-0529-0_4.
10

引用本文的文献

1
: How and Why It Became a Model Organism.
Int J Mol Sci. 2025 Aug 2;26(15):7485. doi: 10.3390/ijms26157485.
2
Dual effects of and on hyperglycemia and infection in .
Narra J. 2025 Apr;5(1):e1972. doi: 10.52225/narra.v5i1.1972. Epub 2024 Feb 12.
3
Anti-aging and immunomodulatory role of caffeine in larvae.
Narra J. 2024 Aug;4(2):e818. doi: 10.52225/narra.v4i2.818. Epub 2024 Jun 28.
4
Promoting mitochondrial dynamics by inhibiting the PINK1-PRKN pathway to relieve diabetic nephropathy.
Dis Model Mech. 2024 Apr 1;17(4). doi: 10.1242/dmm.050471. Epub 2024 May 1.
5
Towards improved screening of toxins for Parkinson's risk.
NPJ Parkinsons Dis. 2023 Dec 19;9(1):169. doi: 10.1038/s41531-023-00615-9.
6
Senolytic and senomorphic secondary metabolites as therapeutic agents in models of Parkinson's disease.
Front Neurol. 2023 Sep 28;14:1271941. doi: 10.3389/fneur.2023.1271941. eCollection 2023.
7
Parallelized computational 3D video microscopy of freely moving organisms at multiple gigapixels per second.
Nat Photonics. 2023 May;17(5):442-450. doi: 10.1038/s41566-023-01171-7. Epub 2023 Mar 20.
9
Using as a suitable platform for drug discovery from natural products in inflammatory bowel disease.
Front Pharmacol. 2022 Dec 5;13:1072715. doi: 10.3389/fphar.2022.1072715. eCollection 2022.
10
Drug discovery from natural products - Old problems and novel solutions for the treatment of neurodegenerative diseases.
J Pharm Biomed Anal. 2022 Feb 20;210:114553. doi: 10.1016/j.jpba.2021.114553. Epub 2021 Dec 24.

本文引用的文献

1
Geroneuroprotectors: Effective Geroprotectors for the Brain.
Trends Pharmacol Sci. 2018 Dec;39(12):1004-1007. doi: 10.1016/j.tips.2018.09.008. Epub 2018 Nov 13.
2
Models of Sporadic Parkinson's Disease.
Int J Mol Sci. 2018 Oct 26;19(11):3343. doi: 10.3390/ijms19113343.
5
Curcumin Effectively Rescued Parkinson's Disease-Like Phenotypes in a Novel Model with dUCH Knockdown.
Oxid Med Cell Longev. 2018 Jul 3;2018:2038267. doi: 10.1155/2018/2038267. eCollection 2018.
6
Mounting evidence validates Ursolic Acid directly activates SIRT1: A powerful STAC which mimic endogenous activator of SIRT1.
Arch Biochem Biophys. 2018 Jul 15;650:39-48. doi: 10.1016/j.abb.2018.05.012. Epub 2018 May 17.
7
Gene Therapy for Parkinson's Disease, An Update.
J Parkinsons Dis. 2018;8(2):195-215. doi: 10.3233/JPD-181331.
8
Modeling Parkinson's Disease in : What Have We Learned for Dominant Traits?
Front Neurol. 2018 Apr 9;9:228. doi: 10.3389/fneur.2018.00228. eCollection 2018.
9
Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives.
Curr Neurol Neurosci Rep. 2018 Apr 3;18(5):21. doi: 10.1007/s11910-018-0829-3.
10
Three-Dimensional Cell Culture Models in Drug Discovery and Drug Repositioning.
Front Pharmacol. 2018 Jan 23;9:6. doi: 10.3389/fphar.2018.00006. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验