Suppr超能文献

蝶类拟态多态性凸显了基因在多种适应性进化中重复利用的系统发育限制。

Butterfly Mimicry Polymorphisms Highlight Phylogenetic Limits of Gene Reuse in the Evolution of Diverse Adaptations.

机构信息

Department of Ecology & Evolution, The University of Chicago, Chicago, IL.

出版信息

Mol Biol Evol. 2019 Dec 1;36(12):2842-2853. doi: 10.1093/molbev/msz194.

Abstract

Some genes have repeatedly been found to control diverse adaptations in a wide variety of organisms. Such gene reuse reveals not only the diversity of phenotypes these unique genes control but also the composition of developmental gene networks and the genetic routes available to and taken by organisms during adaptation. However, the causes of gene reuse remain unclear. A small number of large-effect Mendelian loci control a huge diversity of mimetic butterfly wing color patterns, but reasons for their reuse are difficult to identify because the genetic basis of mimicry has primarily been studied in two systems with correlated factors: female-limited Batesian mimicry in Papilio swallowtails (Papilionidae) and non-sex-limited Müllerian mimicry in Heliconius longwings (Nymphalidae). Here, we break the correlation between phylogenetic relationship and sex-limited mimicry by identifying loci controlling female-limited mimicry polymorphism Hypolimnas misippus (Nymphalidae) and non-sex-limited mimicry polymorphism in Papilio clytia (Papilionidae). The Papilio clytia polymorphism is controlled by the genome region containing the gene cortex, the classic P supergene in Heliconius numata, and loci controlling color pattern variation across Lepidoptera. In contrast, female-limited mimicry polymorphism in Hypolimnas misippus is associated with a locus not previously implicated in color patterning. Thus, although many species repeatedly converged on cortex and its neighboring genes over 120 My of evolution of diverse color patterns, female-limited mimicry polymorphisms each evolved using a different gene. Our results support conclusions that gene reuse occurs mainly within ∼10 My and highlight the puzzling diversity of genes controlling seemingly complex female-limited mimicry polymorphisms.

摘要

一些基因被反复发现可以控制多种生物的多种适应性。这种基因重复使用不仅揭示了这些独特基因控制的表型多样性,还揭示了发育基因网络的组成以及生物在适应过程中可用和采取的遗传途径。然而,基因重复使用的原因仍不清楚。少数大效应的孟德尔基因座控制着蝴蝶翅膀颜色模式的巨大多样性的模拟,但由于模拟的遗传基础主要在两个具有相关因素的系统中进行了研究,因此很难确定它们被重复使用的原因:燕尾蝶(Papilionidae)中的雌性限制型 Batesian 模拟和长翅凤蝶(Heliconius longwings)中的非性限制型 Müllerian 模拟。在这里,我们通过鉴定控制雌性限制型模拟多态性 Hypolimnas misippus(鳞翅目)和 Papilio clytia(鳞翅目)中非性限制型模拟多态性的基因座,打破了系统发育关系和雌性限制型模拟之间的相关性。Papilio clytia 的多态性由包含基因 cortex 的基因组区域控制,这是 Heliconius numata 中的经典 P 超基因,以及控制鳞翅目颜色模式变异的基因座。相比之下,Hypolimnas misippus 中的雌性限制型模拟多态性与以前未涉及颜色图案的基因座相关。因此,尽管许多物种在 1.2 亿年的多样化颜色模式进化过程中反复趋同于 cortex 及其邻近基因,但雌性限制型模拟多态性的进化都使用了不同的基因。我们的结果支持了基因重复使用主要发生在约 1000 万年的结论,并强调了控制看似复杂的雌性限制型模拟多态性的基因多样性令人困惑。

相似文献

2
Parallel evolution of Batesian mimicry supergene in two butterflies, and .
Sci Adv. 2018 Apr 18;4(4):eaao5416. doi: 10.1126/sciadv.aao5416. eCollection 2018 Apr.
3
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry.
Genetics. 2015 May;200(1):1-19. doi: 10.1534/genetics.114.172387.
5
and again: the repeated use of two mimicry hotspot loci.
Proc Biol Sci. 2024 Aug;291(2027):20240627. doi: 10.1098/rspb.2024.0627. Epub 2024 Jul 24.
7
-regulatory switches establish scale colour identity and pattern diversity in .
Elife. 2021 Jul 19;10:e68549. doi: 10.7554/eLife.68549.
8
Deep Convergence, Shared Ancestry, and Evolutionary Novelty in the Genetic Architecture of Mimicry.
Genetics. 2020 Nov;216(3):765-780. doi: 10.1534/genetics.120.303611. Epub 2020 Sep 3.
9
Evolution of dominance mechanisms at a butterfly mimicry supergene.
Nat Commun. 2014 Nov 27;5:5644. doi: 10.1038/ncomms6644.
10
Genomic architecture and functional unit of mimicry supergene in female limited Batesian mimic butterflies.
Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210198. doi: 10.1098/rstb.2021.0198. Epub 2022 Jun 13.

引用本文的文献

1
A microRNA is the effector gene of a classic evolutionary hotspot locus.
Science. 2024 Dec 6;386(6726):1135-1141. doi: 10.1126/science.adp7899. Epub 2024 Dec 5.
2
Hidden in plain sight: (Re)definition of a key lepidopteran color patterning gene.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2419749121. doi: 10.1073/pnas.2419749121. Epub 2024 Nov 25.
3
The lncRNA regulates seasonal color patterns in buckeye butterflies.
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2403426121. doi: 10.1073/pnas.2403426121. Epub 2024 Oct 1.
4
A long noncoding RNA at the locus controls adaptive coloration in butterflies.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2403326121. doi: 10.1073/pnas.2403326121. Epub 2024 Aug 30.
5
and again: the repeated use of two mimicry hotspot loci.
Proc Biol Sci. 2024 Aug;291(2027):20240627. doi: 10.1098/rspb.2024.0627. Epub 2024 Jul 24.
6
A micro-RNA is the effector gene of a classic evolutionary hotspot locus.
bioRxiv. 2024 Apr 18:2024.02.09.579741. doi: 10.1101/2024.02.09.579741.
7
Controls Both Hindwing and Abdominal Mimicry Traits in the Female-Limited Batesian Mimicry of .
Front Insect Sci. 2022 Jul 12;2:929518. doi: 10.3389/finsc.2022.929518. eCollection 2022.
8
Butterfly mimicry rings run in circles.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2220680120. doi: 10.1073/pnas.2220680120. Epub 2023 Jan 17.
9
Association mapping of colour variation in a butterfly provides evidence that a supergene locks together a cluster of adaptive loci.
Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210193. doi: 10.1098/rstb.2021.0193. Epub 2022 Jun 13.
10
Genomic architecture and functional unit of mimicry supergene in female limited Batesian mimic butterflies.
Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210198. doi: 10.1098/rstb.2021.0198. Epub 2022 Jun 13.

本文引用的文献

1
Unravelling the genes forming the wing pattern supergene in the polymorphic butterfly .
Evodevo. 2019 Aug 8;10:16. doi: 10.1186/s13227-019-0129-2. eCollection 2019.
2
Evolution at two time frames: Polymorphisms from an ancient singular divergence event fuel contemporary parallel evolution.
PLoS Genet. 2018 Nov 13;14(11):e1007796. doi: 10.1371/journal.pgen.1007796. eCollection 2018 Nov.
3
Aristaless Controls Butterfly Wing Color Variation Used in Mimicry and Mate Choice.
Curr Biol. 2018 Nov 5;28(21):3469-3474.e4. doi: 10.1016/j.cub.2018.08.051. Epub 2018 Oct 25.
4
Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion.
Curr Biol. 2018 Jun 4;28(11):1839-1845.e3. doi: 10.1016/j.cub.2018.04.072. Epub 2018 May 24.
5
Parallel evolution of Batesian mimicry supergene in two butterflies, and .
Sci Adv. 2018 Apr 18;4(4):eaao5416. doi: 10.1126/sciadv.aao5416. eCollection 2018 Apr.
6
BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics.
Mol Biol Evol. 2018 Mar 1;35(3):543-548. doi: 10.1093/molbev/msx319.
7
Tracing the origin and evolution of supergene mimicry in butterflies.
Nat Commun. 2017 Nov 7;8(1):1269. doi: 10.1038/s41467-017-01370-1.
8
Macroevolutionary shifts of function potentiate butterfly wing-pattern diversity.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10701-10706. doi: 10.1073/pnas.1708149114. Epub 2017 Sep 18.
9
Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10707-10712. doi: 10.1073/pnas.1709058114. Epub 2017 Sep 18.
10
Mimicry in butterflies: co-option and a bag of magnificent developmental genetic tricks.
Wiley Interdiscip Rev Dev Biol. 2018 Jan;7(1). doi: 10.1002/wdev.291. Epub 2017 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验