Suppr超能文献

微小RNA是一个经典进化热点基因座的效应基因。

A microRNA is the effector gene of a classic evolutionary hotspot locus.

作者信息

Tian Shen, Asano Yoshimasa, Das Banerjee Tirtha, Komata Shinya, Wee Jocelyn Liang Qi, Lamb Abigail, Wang Yehan, Murugesan Suriya Narayanan, Fujiwara Haruhiko, Ui-Tei Kumiko, Wittkopp Patricia J, Monteiro Antónia

机构信息

Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

出版信息

Science. 2024 Dec 6;386(6726):1135-1141. doi: 10.1126/science.adp7899. Epub 2024 Dec 5.

Abstract

In Lepidoptera (butterflies and moths), the genomic region around the gene is a "hotspot" locus, repeatedly implicated in generating intraspecific melanic wing color polymorphisms across 100 million years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. We show that none of the four candidate protein-coding genes within this locus, including , serve as major effectors. Instead, a microRNA (miRNA), , serves as the major effector across three deeply diverged lineages of butterflies, and its role is conserved in . In Lepidoptera, is derived from a gigantic primary long noncoding RNA, , and it functions by directly repressing multiple pigmentation genes. We show that a miRNA can drive repeated instances of adaptive evolution in animals.

摘要

在鳞翅目(蝴蝶和蛾类)中,基因周围的基因组区域是一个“热点”位点,在长达1亿年的进化过程中,该位点反复与种内黑色翅膀颜色多态性的产生有关。然而,该位点内调节黑色翅膀颜色的效应基因的身份仍然未知。我们发现,该位点内的四个候选蛋白质编码基因,包括 ,都不是主要效应基因。相反,一种微小RNA(miRNA), 在三个深度分化的蝴蝶谱系中作为主要效应基因,并且其作用在 中是保守的。在鳞翅目中, 源自一个巨大的初级长链非编码RNA, ,它通过直接抑制多个色素沉着基因发挥作用。我们表明,一种miRNA可以推动动物适应性进化的重复实例。

相似文献

1
A microRNA is the effector gene of a classic evolutionary hotspot locus.
Science. 2024 Dec 6;386(6726):1135-1141. doi: 10.1126/science.adp7899. Epub 2024 Dec 5.
2
A micro-RNA is the effector gene of a classic evolutionary hotspot locus.
bioRxiv. 2024 Apr 18:2024.02.09.579741. doi: 10.1101/2024.02.09.579741.
3
A long noncoding RNA at the locus controls adaptive coloration in butterflies.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2403326121. doi: 10.1073/pnas.2403326121. Epub 2024 Aug 30.
4
and again: the repeated use of two mimicry hotspot loci.
Proc Biol Sci. 2024 Aug;291(2027):20240627. doi: 10.1098/rspb.2024.0627. Epub 2024 Jul 24.
5
The lncRNA regulates seasonal color patterns in buckeye butterflies.
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2403426121. doi: 10.1073/pnas.2403426121. Epub 2024 Oct 1.
6
The gene cortex controls mimicry and crypsis in butterflies and moths.
Nature. 2016 Jun 2;534(7605):106-10. doi: 10.1038/nature17961.
7
A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths.
Mol Biol Evol. 2015 May;32(5):1161-74. doi: 10.1093/molbev/msv004. Epub 2015 Jan 8.
8
Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?
Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713). doi: 10.1098/rstb.2015.0485.
9
-regulatory switches establish scale colour identity and pattern diversity in .
Elife. 2021 Jul 19;10:e68549. doi: 10.7554/eLife.68549.
10
A large deletion at the cortex locus eliminates butterfly wing patterning.
G3 (Bethesda). 2022 Apr 4;12(4). doi: 10.1093/g3journal/jkac021.

引用本文的文献

1
Noncoding RNAs have a key role in butterfly speciation. What about other flora and fauna?
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2515930122. doi: 10.1073/pnas.2515930122. Epub 2025 Jul 9.
2
Single-nucleus transcriptomics of wing sexual dimorphism and scale cell specialization in sulphur butterflies.
PLoS Biol. 2025 Jun 18;23(6):e3003233. doi: 10.1371/journal.pbio.3003233. eCollection 2025 Jun.
3
Lepidopteran scale cells derive from sensory organ precursors through a canonical lineage.
Development. 2025 Mar 1;152(5). doi: 10.1242/dev.204501. Epub 2025 Mar 7.
4
Profiling the regulatory landscape of sialylation through miRNA targeting of CMP- sialic acid synthetase.
J Biol Chem. 2025 Apr;301(4):108340. doi: 10.1016/j.jbc.2025.108340. Epub 2025 Feb 24.
5
Hidden in plain sight: (Re)definition of a key lepidopteran color patterning gene.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2419749121. doi: 10.1073/pnas.2419749121. Epub 2024 Nov 25.

本文引用的文献

1
The lncRNA regulates seasonal color patterns in buckeye butterflies.
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2403426121. doi: 10.1073/pnas.2403426121. Epub 2024 Oct 1.
2
A long noncoding RNA at the locus controls adaptive coloration in butterflies.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2403326121. doi: 10.1073/pnas.2403326121. Epub 2024 Aug 30.
3
A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins.
Nat Ecol Evol. 2023 Jun;7(6):903-913. doi: 10.1038/s41559-023-02041-9. Epub 2023 May 15.
4
Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers.
Science. 2023 Feb 10;379(6632):576-582. doi: 10.1126/science.adf1323. Epub 2023 Feb 9.
5
The evolution and diversification of oakleaf butterflies.
Cell. 2022 Aug 18;185(17):3138-3152.e20. doi: 10.1016/j.cell.2022.06.042. Epub 2022 Aug 3.
6
Association mapping of colour variation in a butterfly provides evidence that a supergene locks together a cluster of adaptive loci.
Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210193. doi: 10.1098/rstb.2021.0193. Epub 2022 Jun 13.
8
Genomic architecture of a genetically assimilated seasonal color pattern.
Science. 2020 Nov 6;370(6517):721-725. doi: 10.1126/science.aaz3017.
9
Genomic architecture and introgression shape a butterfly radiation.
Science. 2019 Nov 1;366(6465):594-599. doi: 10.1126/science.aaw2090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验