Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland.
Cancer Res. 2019 Nov 15;79(22):5849-5859. doi: 10.1158/0008-5472.CAN-18-3511. Epub 2019 Sep 10.
Genetic and epigenetic changes (e.g., histone methylation) contribute to cancer development and progression, but our understanding of whether and how specific mutations affect a cancer's sensitivity to histone demethylase (KDM) inhibitors is limited. Here, we evaluated the effects of a panel of KDM inhibitors on lung adenocarcinomas (LuAC) with various mutations. Notably, LuAC lines harboring mutations showed hypersensitivity to the histone H3K27 demethylase inhibitor GSK-J4. Specifically, GSK-J4 treatment of mutant-containing LuAC downregulated cell-cycle progression genes with increased H3K27me3. In addition, GSK-J4 upregulated expression of genes involved in glutamine/glutamate transport and metabolism. In line with this, GSK-J4 reduced cellular levels of glutamate, a key source of the TCA cycle intermediate α-ketoglutarate (αKG) and of the antioxidant glutathione, leading to reduced cell viability. Supplementation with an αKG analogue or glutathione protected -mutant LuAC cells from GSK-J4-mediated reductions in viability, suggesting GSK-J4 exerts its anticancer effects by inducing metabolic and oxidative stress. Importantly, knockdown in mutant LuAC lines prevented GSK-J4-induced decrease in glutamate levels and reduced their susceptibility to GSK-J4, whereas overexpression of oncogenic in wild-type LuAC lines sensitized them to GSK-J4. Collectively, our study uncovers a novel association between a genetic mutation and KDM inhibitor sensitivity and identifies the underlying mechanisms. This suggests GSK-J4 as a potential treatment option for cancer patients with mutations. SIGNIFICANCE: This study not only provides a novel association between KRAS mutation and GSK-J4 sensitivity but also demonstrates the underlying mechanisms, suggesting a potential use of GSK-J4 in cancer patients with KRAS mutations.
遗传和表观遗传变化(例如组蛋白甲基化)导致癌症的发生和发展,但我们对于特定突变是否以及如何影响癌症对组蛋白去甲基酶(KDM)抑制剂的敏感性知之甚少。在这里,我们评估了一组 KDM 抑制剂对具有各种突变的肺腺癌(LuAC)的影响。值得注意的是,携带 KRAS 突变的 LuAC 系对组蛋白 H3K27 去甲基酶抑制剂 GSK-J4 表现出超敏性。具体而言,GSK-J4 处理含有 KRAS 突变的 LuAC 下调了细胞周期进展基因,并增加了 H3K27me3。此外,GSK-J4 上调了参与谷氨酰胺/谷氨酸转运和代谢的基因表达。与此一致,GSK-J4 降低了细胞内谷氨酸水平,谷氨酸是三羧酸 (TCA) 循环中间产物 α-酮戊二酸 (αKG) 和抗氧化剂谷胱甘肽的主要来源,导致细胞活力降低。用 αKG 类似物或谷胱甘肽补充可以保护携带 KRAS 突变的 LuAC 细胞免受 GSK-J4 介导的活力降低,表明 GSK-J4 通过诱导代谢和氧化应激发挥其抗癌作用。重要的是,KRAS 突变的 LuAC 系中的 KRAS 敲低阻止了 GSK-J4 诱导的谷氨酸水平降低,并降低了它们对 GSK-J4 的敏感性,而致癌性 KRAS 过表达使野生型 LuAC 系对 GSK-J4 敏感。总之,我们的研究揭示了遗传突变与 KDM 抑制剂敏感性之间的新关联,并确定了潜在的机制。这表明 GSK-J4 可能成为具有 KRAS 突变的癌症患者的一种潜在治疗选择。
这项研究不仅提供了 KRAS 突变与 GSK-J4 敏感性之间的新关联,还证明了潜在的机制,表明 GSK-J4 可能用于具有 KRAS 突变的癌症患者。