Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore; NUS Graduate School for Integrative Sciences and Engineering, 21 Lower Kent Ridge Road, 119077, Singapore.
J Control Release. 2019 Nov 10;313:120-130. doi: 10.1016/j.jconrel.2019.10.013. Epub 2019 Oct 16.
There is growing interest in the development of nucleic acid nanostructures as smart functional materials for applications in drug delivery. Inspired by the diverse physical interactions that exist in nature, crosslinked DNA nanostructures can serve as attractive affinity binding networks that interact with therapeutic cargos or living cells. Herein we report a strategy that addresses the challenges of topical oligopeptide therapy by exploiting high binding affinity between polyanionic DNA nanostructures and cationic antimicrobial peptides (AMPs) to fabricate hydrogels that release a model antimicrobial L12 peptide in response to pathogenic S. aureus infections. We further demonstrated controlled peptide release profiles via the DNA hydrogels that were biocompatible and delivered superior antimicrobial activity against nuclease-releasing susceptible and methicillin-resistant S. aureus infections. Single application of the L12-loaded DNA hydrogels on porcine explant S. aureus infections revealed potent efficacy after 24h. As a result of the capacity of the crosslinked DNA nanostructures to elicit a strong anti-inflammatory response, in vivo treatment of mice excision wounds translated into faster healing rates. Overall, the crosslinked DNA nanostructures reported in this study offer significant advantage as functional wound dressings and their future adaptation holds equally great promise for the delivery of cationic antimicrobials.
人们对核酸纳米结构作为智能功能材料在药物输送中的应用越来越感兴趣。交联 DNA 纳米结构可以作为有吸引力的亲和结合网络,与治疗 cargos 或活细胞相互作用,这一想法受到了自然界中存在的多种物理相互作用的启发。在此,我们报告了一种策略,利用带负电荷的 DNA 纳米结构与阳离子抗菌肽 (AMPs) 之间的高结合亲和力来制备水凝胶,从而解决局部短肽治疗的挑战,该水凝胶可响应致病性金黄色葡萄球菌感染释放模型抗菌 L12 肽。我们进一步通过 DNA 水凝胶实现了对肽的控制释放,这些水凝胶具有生物相容性,并对释放核酸酶的敏感和耐甲氧西林金黄色葡萄球菌感染具有更好的抗菌活性。在猪组织感染模型上进行的单次 L12 负载 DNA 水凝胶应用显示,在 24 小时后具有强大的疗效。由于交联 DNA 纳米结构能够引发强烈的抗炎反应,因此对小鼠切除伤口的体内治疗转化为更快的愈合速度。总的来说,本研究中报道的交联 DNA 纳米结构作为功能性伤口敷料具有显著优势,它们未来的适应同样为阳离子抗菌剂的输送提供了巨大的潜力。