Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Appl Environ Microbiol. 2019 Nov 27;85(24). doi: 10.1128/AEM.01580-19. Print 2019 Dec 15.
The geographic mosaic theory of coevolution (GMC) posits that coevolutionary dynamics go beyond local coevolution and are comprised of the following three components: geographic selection mosaics, coevolutionary hot spots, and trait remixing. It is unclear whether the GMC applies to bacteria, as horizontal gene transfer and cosmopolitan dispersal may violate theoretical assumptions. Here, we test key GMC predictions in an antibiotic-producing bacterial symbiont (genus ) that protects the crops of neotropical fungus-farming ants () from a specialized pathogen (genus ). We found that antibiotic inhibition of common pathogens was elevated in colonies from Panama compared to those from Costa Rica. Furthermore, a Panama Canal Zone population of on Barro Colorado Island (BCI) was locally adapted, whereas two neighboring populations were not, consistent with a GMC-predicted selection mosaic and a hot spot of adaptation surrounded by areas of maladaptation. Maladaptation was shaped by incongruent population genetic structure, whereas local adaptation was facilitated by geographic isolation on BCI after the flooding of the Panama Canal. Genomic assessments of antibiotic potential of 29 strains identified diverse and unique biosynthetic gene clusters in BCI strains despite low genetic diversity in the core genome. The strength of antibiotic inhibition was not correlated with the presence/absence of individual biosynthetic gene clusters or with parasite location. Rather, biosynthetic gene clusters have undergone selective sweeps, suggesting that the trait remixing dynamics conferring the long-term maintenance of antibiotic potency rely on evolutionary genetic changes within already-present biosynthetic gene clusters and not simply on the horizontal acquisition of novel genetic elements or pathways. Recently, coevolutionary theory in macroorganisms has been advanced by the geographic mosaic theory of coevolution (GMC), which considers how geography and local adaptation shape coevolutionary dynamics. Here, we test GMC in an ancient symbiosis in which the ant cultivates fungi in an agricultural system analogous to human farming. The cultivars are parasitized by the fungus The ants maintain symbiotic actinobacteria with antibiotic properties that help combat infection. This antibiotic symbiosis has persisted for tens of millions of years, raising the question of how antibiotic potency is maintained over these time scales. Our study tests the GMC in a bacterial defensive symbiosis and in a multipartite symbiosis framework. Our results show that this multipartite symbiotic system conforms to the GMC and demonstrate that this theory is applicable in both microbes and indirect symbiont-symbiont interactions.
地理镶嵌协同进化理论(GMC)认为协同进化的动态不仅仅局限于局部协同进化,而是由以下三个组成部分构成:地理选择镶嵌、协同进化热点和性状混合。目前尚不清楚 GMC 是否适用于细菌,因为水平基因转移和世界性扩散可能违反了理论假设。在这里,我们在一种产生抗生素的细菌共生体(属)中测试了关键的 GMC 预测,这种共生体可以保护中美洲真菌养殖蚂蚁(属)的作物免受专门病原体(属)的侵害。我们发现,与来自哥斯达黎加的种群相比,来自巴拿马的 抗生素对常见病原体的抑制作用增强。此外,位于巴拿马运河区的巴罗科罗拉多岛(BCI)上的一个 种群具有局部适应性,而两个相邻的种群则没有,这与 GMC 预测的选择镶嵌和一个被适应不良区域包围的适应热点一致。适应不良是由不匹配的 种群遗传结构形成的,而地理隔离则促进了巴拿马运河洪水后 BCI 上的局部适应。对 29 株 的抗生素潜力进行的基因组评估确定了 BCI 菌株中多样化和独特的生物合成基因簇,尽管核心基因组中的遗传多样性较低。抗生素抑制的强度与单个生物合成基因簇的存在/不存在或寄生虫位置无关。相反,生物合成基因簇经历了选择清洗,这表明赋予抗生素效力长期维持的性状混合动态依赖于已经存在的生物合成基因簇内的进化遗传变化,而不仅仅是通过水平获取新的遗传元素或途径。最近,宏观生物的协同进化理论得到了地理镶嵌协同进化理论(GMC)的推进,该理论考虑了地理和局部适应如何塑造协同进化的动态。在这里,我们在一个古老的共生关系中测试了 GMC,其中蚂蚁在一个类似于人类农业的农业系统中培育真菌。这些栽培品种被真菌 寄生。蚂蚁维持具有抗生素特性的共生放线菌,有助于对抗 感染。这种抗生素共生关系已经持续了数千万年,这就提出了一个问题,即在这些时间尺度上,抗生素的效力是如何维持的。我们的研究在一个细菌防御共生体和一个多部分共生体框架中测试了 GMC。我们的结果表明,这个多部分共生系统符合 GMC,并证明了该理论适用于微生物和间接共生体-共生体相互作用。