Suppr超能文献

联合分析单细胞和组织整体测序数据以推断肿瘤内异质性。

Joint analysis of single-cell and bulk tissue sequencing data to infer intratumor heterogeneity.

作者信息

Sun Wei, Jin Chong, Gelfond Jonathan A, Chen Ming-Hui, Ibrahim Joseph G

机构信息

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

出版信息

Biometrics. 2020 Sep;76(3):983-994. doi: 10.1111/biom.13198. Epub 2019 Dec 27.

Abstract

Many computational methods have been developed to discern intratumor heterogeneity (ITH) using DNA sequence data from bulk tumor samples. These methods share an assumption that two mutations arise from the same subclone if they have similar mutant allele-frequencies (MAFs), and thus it is difficult or impossible to distinguish two subclones with similar MAFs. Single-cell DNA sequencing (scDNA-seq) data can be very informative for ITH inference. However, due to the difficulty of DNA amplification, scDNA-seq data are often very noisy. A promising new study design is to collect both bulk and single-cell DNA-seq data and jointly analyze them to mitigate the limitations of each data type. To address the analytic challenges of this new study design, we propose a computational method named BaSiC (Bulk tumor and Single Cell), to discern ITH by jointly analyzing DNA-seq data from bulk tumor and single cells. We demonstrate that BaSiC has comparable or better performance than the methods using either data type. We further evaluate BaSiC using bulk tumor and single-cell DNA-seq data from a breast cancer patient and several leukemia patients.

摘要

已经开发了许多计算方法,用于使用来自肿瘤组织样本的DNA序列数据来识别肿瘤内异质性(ITH)。这些方法都有一个假设:如果两个突变具有相似的突变等位基因频率(MAF),那么它们来自同一个亚克隆,因此很难或无法区分具有相似MAF的两个亚克隆。单细胞DNA测序(scDNA-seq)数据对于ITH推断可能非常有用。然而,由于DNA扩增的困难,scDNA-seq数据往往噪声很大。一种很有前景的新研究设计是同时收集肿瘤组织和单细胞DNA测序数据,并对它们进行联合分析,以减轻每种数据类型的局限性。为了解决这种新研究设计的分析挑战,我们提出了一种名为BaSiC(肿瘤组织和单细胞)的计算方法,通过联合分析肿瘤组织和单细胞的DNA测序数据来识别ITH。我们证明,BaSiC的性能与使用任何一种数据类型的方法相当或更好。我们进一步使用来自一名乳腺癌患者和几名白血病患者的肿瘤组织和单细胞DNA测序数据对BaSiC进行了评估。

相似文献

1
Joint analysis of single-cell and bulk tissue sequencing data to infer intratumor heterogeneity.
Biometrics. 2020 Sep;76(3):983-994. doi: 10.1111/biom.13198. Epub 2019 Dec 27.
2
SpliceHetero: An information theoretic approach for measuring spliceomic intratumor heterogeneity from bulk tumor RNA-seq.
PLoS One. 2019 Oct 23;14(10):e0223520. doi: 10.1371/journal.pone.0223520. eCollection 2019.
5
BnpC: Bayesian non-parametric clustering of single-cell mutation profiles.
Bioinformatics. 2020 Dec 8;36(19):4854-4859. doi: 10.1093/bioinformatics/btaa599.
6
Measuring intratumor heterogeneity by network entropy using RNA-seq data.
Sci Rep. 2016 Nov 24;6:37767. doi: 10.1038/srep37767.
7
Reconstructing mutational lineages in breast cancer by multi-patient-targeted single-cell DNA sequencing.
Cell Genom. 2022 Nov 9;3(1):100215. doi: 10.1016/j.xgen.2022.100215. eCollection 2023 Jan 11.
8
Multi-region and single-cell sequencing reveal variable genomic heterogeneity in rectal cancer.
BMC Cancer. 2017 Nov 23;17(1):787. doi: 10.1186/s12885-017-3777-4.
9
10
DENDRO: genetic heterogeneity profiling and subclone detection by single-cell RNA sequencing.
Genome Biol. 2020 Jan 14;21(1):10. doi: 10.1186/s13059-019-1922-x.

本文引用的文献

1
Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data.
Nat Commun. 2019 Jun 21;10(1):2750. doi: 10.1038/s41467-019-10737-5.
2
Associating somatic mutations to clinical outcomes: a pan-cancer study of survival time.
Genome Med. 2019 May 28;11(1):37. doi: 10.1186/s13073-019-0643-9.
3
The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers.
Nat Rev Cancer. 2018 Nov;18(11):696-705. doi: 10.1038/s41568-018-0060-1.
4
Differences between germline and somatic mutation rates in humans and mice.
Nat Commun. 2017 May 9;8:15183. doi: 10.1038/ncomms15183.
5
Bayesian inference for intratumour heterogeneity in mutations and copy number variation.
J R Stat Soc Ser C Appl Stat. 2016 Aug;65(4):547-563. doi: 10.1111/rssc.12136. Epub 2016 Jan 12.
7
Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future.
Cell. 2017 Feb 9;168(4):613-628. doi: 10.1016/j.cell.2017.01.018.
8
Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5528-37. doi: 10.1073/pnas.1522203113. Epub 2016 Aug 29.
9
FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing.
Nucleic Acids Res. 2016 Sep 19;44(16):e131. doi: 10.1093/nar/gkw520. Epub 2016 Jun 7.
10
Clonal genotype and population structure inference from single-cell tumor sequencing.
Nat Methods. 2016 Jul;13(7):573-6. doi: 10.1038/nmeth.3867. Epub 2016 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验