Suppr超能文献

RUBCN/Rubicon 缺乏对肾脏近端肾小管上皮细胞代谢的影响。

Metabolic effects of RUBCN/Rubicon deficiency in kidney proximal tubular epithelial cells.

机构信息

Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan.

Reverse Translational Project, Center for Rare Disease Research, National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN) , Osaka, Japan.

出版信息

Autophagy. 2020 Oct;16(10):1889-1904. doi: 10.1080/15548627.2020.1712107. Epub 2020 Jan 16.

Abstract

Macroautophagy/autophagy is a lysosomal degradation system which plays a protective role against kidney injury. RUBCN/Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein) inhibits the fusion of autophagosomes and lysosomes. However, its physiological role in kidney proximal tubular epithelial cells (PTECs) remains uncertain. In the current study, we analyzed the phenotype of newly generated PTEC-specific -deficient (KO) mice. Additionally, we investigated the role of RUBCN in lipid metabolism using isolated -deficient PTECs. Although KO mice exhibited sustained high autophagic flux in PTECs, they were not protected from acute ischemic kidney injury. Unexpectedly, KO mice exhibited hallmark features of metabolic syndrome accompanied by expanded lysosomes containing multi-layered phospholipids in PTECs. RUBCN deficiency in cultured PTECs promoted the mobilization of phospholipids from cellular membranes to lysosomes via enhanced autophagy. Treatment of KO PTECs with oleic acid accelerated fatty acids transfer to mitochondria. Furthermore, KO PTECs promoted massive triglyceride accumulation in hepatocytes (BNL-CL2 cells) co-cultured in transwell, suggesting accelerated fatty acids efflux from the PTECs contributes to the metabolic syndrome in KO mice. This study shows that sustained high autophagic flux by RUBCN deficiency in PTECs leads to metabolic syndrome concomitantly with an accelerated mobilization of phospholipids from cellular membranes to lysosomes. : ABC: ATP binding cassette; ACADM: acyl-CoA dehydrogenase medium chain; ACTB: actin, beta; ATG: autophagy related; AUC: area under the curve; Baf: bafilomycin A; BAT: brown adipose tissue; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; BW: body weight; CAT: chloramphenicol acetyltransferase; CM: complete medium; CPT1A: carnitine palmitoyltransferase 1a, liver; CQ: chloroquine; CTRL: control; EGFP: enhanced green fluorescent protein; CTSD: cathepsin D; EAT: epididymal adipose tissue; EGFR: epidermal growth factor receptor; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FA: fatty acid; FBS: fetal bovine serum; GTT: glucose tolerance test; HE: hematoxylin and eosin; HFD: high-fat diet; I/R: ischemia-reperfusion; ITT: insulin tolerance test; KAP: kidney androgen regulated protein; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor related protein 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MAT: mesenteric adipose tissue; MS: mass spectrometry; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NDRG1: N-myc downstream regulated 1; NDUFB5: NADH:ubiquinone oxidoreductase subunit B5; NEFA: non-esterified fatty acid; OA: oleic acid; OCT: optimal cutting temperature; ORO: Oil Red O; PAS: Periodic-acid Schiff; PFA: paraformaldehyde; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PPARA: peroxisome proliferator activated receptor alpha; PPARGC1A: PPARG coactivator 1 alpha; PTEC: proximal tubular epithelial cell; RAB7A: RAB7A, member RAS oncogene family; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RT: reverse transcription; RUBCN: rubicon autophagy regulator; SAT: subcutaneous adipose tissue; SFC: supercritical fluid chromatography; SQSTM1: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1; SV-40: simian virus-40; TFEB: transcription factor EB; TG: triglyceride; TS: tissue specific; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; UN: urea nitrogen; UQCRB: ubiquinol-cytochrome c reductase binding protein; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting; WAT: white adipose tissue.

摘要

自噬是一种溶酶体降解系统,在肾脏损伤中发挥保护作用。RUBCN/Rubicon(RAB7A 结合蛋白和富含半胱氨酸域的 Beclin 1 相互作用蛋白)抑制自噬体和溶酶体的融合。然而,其在近端肾小管上皮细胞(PTECs)中的生理作用尚不确定。在本研究中,我们分析了新生成的 PTEC 特异性 -/-(KO)小鼠的表型。此外,我们使用分离的 -/-PTECs 研究了 RUBCN 在脂质代谢中的作用。尽管 KO 小鼠在 PTECs 中表现出持续的高自噬流,但它们没有免受急性缺血性肾损伤的保护。出乎意料的是,KO 小鼠表现出代谢综合征的标志性特征,同时伴有含有多层磷脂的扩张溶酶体。培养的 PTECs 中 RUBCN 的缺乏通过增强自噬促进磷脂从细胞膜向溶酶体的动员。用油酸处理 KO PTECs 可加速脂肪酸向线粒体的转移。此外,KO PTECs 促进大量甘油三酯在共培养的 BNL-CL2 细胞中的积累,表明从 PTECs 中加速脂肪酸外排有助于 KO 小鼠的代谢综合征。本研究表明,PTECs 中 RUBCN 缺乏导致持续的高自噬通量,同时加速了细胞膜磷脂向溶酶体的动员。: ABC: 三磷酸腺苷结合盒; ACADM: 中链酰基辅酶 A 脱氢酶; ACTB: 肌动蛋白,β; ATG: 自噬相关; AUC: 曲线下面积; Baf: 巴佛霉素 A; BAT: 棕色脂肪组织; BODIPY: 硼二吡咯甲烷; BSA: 牛血清白蛋白; BW: 体重; CAT: 氯霉素乙酰转移酶; CM: 完全培养基; CPT1A: 肉碱棕榈酰转移酶 1a,肝; CQ: 氯喹; CTRL: 对照; EGFP: 增强型绿色荧光蛋白; CTSD: 组织蛋白酶 D; EAT: 附睾脂肪组织; EGFR: 表皮生长因子受体; EIF4EBP1: 真核翻译起始因子 4E 结合蛋白 1; FA: 脂肪酸; FBS: 胎牛血清; GTT: 葡萄糖耐量试验; HE: 苏木精和伊红; HFD: 高脂肪饮食; I/R: 缺血再灌注; ITT: 胰岛素耐量试验; KAP: 肾雄激素调节蛋白; KO: 敲除; LAMP1: 溶酶体相关膜蛋白 1; LD: 脂滴; LRP2: 低密度脂蛋白受体相关蛋白 2; MAP1LC3B: 微管相关蛋白 1 轻链 3β; MAT: 肠系膜脂肪组织; MS: 质谱; MTOR: 雷帕霉素靶蛋白激酶; MTORC1: MTOR 复合物 1; NDRG1: N-myc 下游调节因子 1; NDUFB5: NADH: 泛醌氧化还原酶亚基 B5; NEFA: 非酯化脂肪酸; OA: 油酸; OCT: 最佳切割温度; ORO: Oil Red O; PAS: 过碘酸希夫; PFA: 多聚甲醛; PIK3C3: 磷脂酰肌醇 3-激酶催化亚单位 3; PPARA: 过氧化物酶体增殖物激活受体 alpha; PPARGC1A: PPARG 共激活因子 1a; PTEC: 近端肾小管上皮细胞; RAB7A: RAB7A,RAS 癌基因家族成员; RPS6: 核糖体蛋白 S6; RPS6KB1: 核糖体蛋白 S6 激酶 B1; RT: 反转录; RUBCN: 自噬调节剂 rubicon; SAT: 皮下脂肪组织; SFC: 超临界流体色谱; SQSTM1: 自噬体相关蛋白 1; SREBF1: 固醇调节元件结合转录因子 1; SV-40: 猿猴病毒 40; TFEB: 转录因子 EB; TG: 甘油三酯; TS: 组织特异性; TUNEL: 末端脱氧核苷酸转移酶介导的 dUTP 缺口末端标记; UN: 尿素氮; UQCRB: 泛醌-细胞色素 c 还原酶结合蛋白; UVRAG: UV 辐射抗性相关; VPS: 液泡蛋白分选; WAT: 白色脂肪组织。

相似文献

1
Metabolic effects of RUBCN/Rubicon deficiency in kidney proximal tubular epithelial cells.
Autophagy. 2020 Oct;16(10):1889-1904. doi: 10.1080/15548627.2020.1712107. Epub 2020 Jan 16.
2
Eicosapentaenoic acid attenuates renal lipotoxicity by restoring autophagic flux.
Autophagy. 2021 Jul;17(7):1700-1713. doi: 10.1080/15548627.2020.1782034. Epub 2020 Jun 28.
3
TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation.
Autophagy. 2021 Sep;17(9):2549-2564. doi: 10.1080/15548627.2020.1834711. Epub 2020 Nov 16.
4
Thyroid hormone (T) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy.
Autophagy. 2019 Jan;15(1):131-150. doi: 10.1080/15548627.2018.1511263. Epub 2018 Sep 13.
5
Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys.
Autophagy. 2019 Dec;15(12):2142-2162. doi: 10.1080/15548627.2019.1615822. Epub 2019 May 22.
6
The ménage à trois of autophagy, lipid droplets and liver disease.
Autophagy. 2022 Jan;18(1):50-72. doi: 10.1080/15548627.2021.1895658. Epub 2021 Apr 2.
8
PAQR3 suppresses the growth of non-small cell lung cancer cells via modulation of EGFR-mediated autophagy.
Autophagy. 2020 Jul;16(7):1236-1247. doi: 10.1080/15548627.2019.1659654. Epub 2019 Aug 30.
9
Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis.
Autophagy. 2019 Nov;15(11):1954-1969. doi: 10.1080/15548627.2019.1596486. Epub 2019 Mar 30.
10
Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis.
Autophagy. 2021 Mar;17(3):690-705. doi: 10.1080/15548627.2020.1728097. Epub 2020 Feb 19.

引用本文的文献

2
3
AIP, fatty liver, and HbA1c as modifiers of the C-index and diabetes risk relationship.
Lipids Health Dis. 2025 Apr 2;24(1):129. doi: 10.1186/s12944-025-02546-1.
5
Evaluating the Effects of Perinatal Exposures to BPSIP on Hepatic Cholesterol Metabolism in Female and Male Offspring ICR Mice.
Environ Health Perspect. 2024 Sep;132(9):97011. doi: 10.1289/EHP14643. Epub 2024 Sep 19.
6
Lipid Droplet-Mitochondria Contacts in Health and Disease.
Int J Mol Sci. 2024 Jun 22;25(13):6878. doi: 10.3390/ijms25136878.
8
The autophagy protein RUBCNL/PACER represses RIPK1 kinase-dependent apoptosis and necroptosis.
Autophagy. 2024 Nov;20(11):2444-2459. doi: 10.1080/15548627.2024.2367923. Epub 2024 Jul 3.
9
MondoA and AKI and AKI-to-CKD Transition.
J Am Soc Nephrol. 2024 May 31;35(9):1164-82. doi: 10.1681/ASN.0000000000000414.

本文引用的文献

1
Proximal Tubule Autophagy Differs in Type 1 and 2 Diabetes.
J Am Soc Nephrol. 2019 Jun;30(6):929-945. doi: 10.1681/ASN.2018100983. Epub 2019 Apr 30.
2
Widely-targeted quantitative lipidomics method by supercritical fluid chromatography triple quadrupole mass spectrometry.
J Lipid Res. 2018 Jul;59(7):1283-1293. doi: 10.1194/jlr.D083014. Epub 2018 May 3.
3
Antioxidant role of autophagy in maintaining the integrity of glomerular capillaries.
Autophagy. 2018;14(1):53-65. doi: 10.1080/15548627.2017.1391428.
4
Lipophagy maintains energy homeostasis in the kidney proximal tubule during prolonged starvation.
Autophagy. 2017 Oct 3;13(10):1629-1647. doi: 10.1080/15548627.2017.1341464. Epub 2017 Aug 16.
5
Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex.
Science. 2017 Mar 24;355(6331):1306-1311. doi: 10.1126/science.aag1417.
7
Multistep regulation of TFEB by MTORC1.
Autophagy. 2017 Mar 4;13(3):464-472. doi: 10.1080/15548627.2016.1271514. Epub 2017 Jan 5.
9
High-Fat Diet-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Lipotoxicity in the Kidney.
J Am Soc Nephrol. 2017 May;28(5):1534-1551. doi: 10.1681/ASN.2016070731. Epub 2016 Dec 8.
10
Diverse relations between ABC transporters and lipids: An overview.
Biochim Biophys Acta Biomembr. 2017 Apr;1859(4):605-618. doi: 10.1016/j.bbamem.2016.09.023. Epub 2016 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验