Suppr超能文献

自噬衍生的脂肪酸通过溶酶体胞吐作用进行细胞外流出。

Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis.

作者信息

Cui Wenqi, Sathyanarayan Aishwarya, Lopresti Michael, Aghajan Mariam, Chen Chi, Mashek Douglas G

机构信息

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.

Ionis Pharmaceuticals, Carlsbad, CA, USA.

出版信息

Autophagy. 2021 Mar;17(3):690-705. doi: 10.1080/15548627.2020.1728097. Epub 2020 Feb 19.

Abstract

The autophagic degradation of lipid droplets (LDs), termed lipophagy, is a major mechanism that contributes to lipid turnover in numerous cell types. While numerous factors, including nutrient deprivation or overexpression of PNPLA2/ATGL (patatin-like phospholipase domain containing 2) drive lipophagy, the trafficking of fatty acids (FAs) produced from this pathway is largely unknown. Herein, we show that PNPLA2 and nutrient deprivation promoted the extracellular efflux of FAs. Inhibition of autophagy or lysosomal lipid degradation attenuated FA efflux highlighting a critical role for lipophagy in this process. Rather than direct transport of FAs across the lysosomal membrane, lipophagy-derived FA efflux requires lysosomal fusion to the plasma membrane. The lysosomal Ca2+ channel protein MCOLN1/TRPML1 (mucolipin 1) regulates lysosomal-plasma membrane fusion and its overexpression increased, while inhibition blocked FA efflux. In addition, inhibition of autophagy/lipophagy or MCOLN1, or sequestration of extracellular FAs with BSA attenuated the oxidation and re-esterification of lipophagy-derived FAs. Overall, these studies show that the well-established pathway of lysosomal fusion to the plasma membrane is the primary route for the disposal of FAs derived from lipophagy. Moreover, the efflux of FAs and their reuptake or subsequent extracellular trafficking to adjacent cells may play an important role in cell-to-cell lipid exchange and signaling. ACTB: beta actin; ADRA1A: adrenergic receptor alpha, 1a; ALB: albumin; ATG5: autophagy related 5; ATG7: autophagy related 7; BafA1: bafilomycin A1; BECN1: beclin 1; BHBA: beta-hydroxybutyrate; BSA: bovine serum albumin; CDH1: e-cadherin; CQ: chloroquine; CTSB: cathepsin B; DGAT: diacylglycerol O-acyltransferase; FA: fatty acid; HFD: high-fat diet; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LIPA/LAL: lysosomal acid lipase A; LLME: Leu-Leu methyl ester hydrobromide; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryo fibroblast; PBS: phosphate-buffered saline; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PLIN: perilipin; PNPLA2/ATGL patatin-like phospholipase domain containing 2; RUBCN (rubicon autophagy regulator); SM: sphingomyelin; TAG: triacylglycerol; TMEM192: transmembrane protein 192; VLDL: very low density lipoprotein.

摘要

脂滴的自噬性降解,即脂质自噬,是众多细胞类型中脂质周转的主要机制。虽然包括营养剥夺或PNPLA2/ATGL(含帕他汀样磷脂酶结构域2)过表达在内的多种因素会驱动脂质自噬,但该途径产生的脂肪酸(FAs)的转运在很大程度上尚不清楚。在此,我们表明PNPLA2和营养剥夺促进了脂肪酸的细胞外流出。自噬或溶酶体脂质降解的抑制减弱了脂肪酸流出,突出了脂质自噬在此过程中的关键作用。脂质自噬衍生的脂肪酸流出并非脂肪酸直接穿过溶酶体膜的运输,而是需要溶酶体与质膜融合。溶酶体Ca2+通道蛋白MCOLN1/TRPML1(黏脂蛋白1)调节溶酶体 - 质膜融合,其过表达会增加,而抑制则会阻断脂肪酸流出。此外,自噬/脂质自噬或MCOLN1的抑制,或用牛血清白蛋白隔离细胞外脂肪酸,会减弱脂质自噬衍生脂肪酸的氧化和再酯化。总体而言,这些研究表明,溶酶体与质膜融合这一既定途径是处理脂质自噬衍生脂肪酸的主要途径。此外,脂肪酸的流出及其重新摄取或随后向相邻细胞的细胞外转运可能在细胞间脂质交换和信号传导中起重要作用。ACTB:β - 肌动蛋白;ADRA1A:肾上腺素能受体α1a;ALB:白蛋白;ATG5:自噬相关5;ATG7:自噬相关7;BafA1:巴弗洛霉素A1;BECN1:贝克林1;BHBA:β - 羟基丁酸;BSA:牛血清白蛋白;CDH1:E - 钙黏蛋白;CQ:氯喹;CTSB:组织蛋白酶B;DGAT:二酰甘油O - 酰基转移酶;FA:脂肪酸;HFD:高脂饮食;LAMP1:溶酶体相关膜蛋白1;LD:脂滴;LIPA/LAL:溶酶体酸性脂肪酶A;LLME:亮氨酸 - 亮氨酸甲酯氢溴酸盐;MAP1LC3B/LC3:微管相关蛋白1轻链3β;MCOLN1/TRPML1:黏脂蛋白1;MEF:小鼠胚胎成纤维细胞;PBS:磷酸盐缓冲盐水;PIK3C3/VPS34:磷脂酰肌醇3 - 激酶催化亚基3型;PLIN:围脂滴蛋白;PNPLA2/ATGL含帕他汀样磷脂酶结构域2;RUBCN(Rubicon自噬调节剂);SM:鞘磷脂;TAG:三酰甘油;TMEM192:跨膜蛋白192;VLDL:极低密度脂蛋白

相似文献

1
Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis.
Autophagy. 2021 Mar;17(3):690-705. doi: 10.1080/15548627.2020.1728097. Epub 2020 Feb 19.
2
The ménage à trois of autophagy, lipid droplets and liver disease.
Autophagy. 2022 Jan;18(1):50-72. doi: 10.1080/15548627.2021.1895658. Epub 2021 Apr 2.
3
Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells.
Autophagy. 2021 Nov;17(11):3671-3689. doi: 10.1080/15548627.2021.1886839. Epub 2021 Feb 26.
4
Metabolic effects of RUBCN/Rubicon deficiency in kidney proximal tubular epithelial cells.
Autophagy. 2020 Oct;16(10):1889-1904. doi: 10.1080/15548627.2020.1712107. Epub 2020 Jan 16.
5
Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis.
Autophagy. 2019 Sep;15(9):1572-1591. doi: 10.1080/15548627.2019.1586256. Epub 2019 Mar 27.
6
MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx.
Autophagy. 2021 Dec;17(12):4401-4422. doi: 10.1080/15548627.2021.1917132. Epub 2021 Apr 23.
7
interferes with host lipid metabolism via -mediated suppression to block autophagy-dependent inhibition of infection.
Autophagy. 2021 Aug;17(8):1918-1933. doi: 10.1080/15548627.2020.1801270. Epub 2020 Aug 11.
8
ATM loss disrupts the autophagy-lysosomal pathway.
Autophagy. 2021 Aug;17(8):1998-2010. doi: 10.1080/15548627.2020.1805860. Epub 2020 Aug 14.

引用本文的文献

1
RAB5 NUCLEOTIDE BINDING PROMOTES β-OXIDATION TO FUEL HEPATOCELLULAR CARCINOMA CELL PROLIFERATION.
bioRxiv. 2025 Aug 24:2025.08.20.670915. doi: 10.1101/2025.08.20.670915.
2
The role of lipophagy in liver cancer: mechanisms and targeted therapeutic interventions.
Front Cell Dev Biol. 2025 Jul 8;13:1562542. doi: 10.3389/fcell.2025.1562542. eCollection 2025.
5
Lipid metabolism, remodelling and intercellular transfer in the CNS.
Nat Rev Neurosci. 2025 Apr;26(4):214-231. doi: 10.1038/s41583-025-00908-3. Epub 2025 Feb 19.
6
PEDF Overexpression Ameliorates Cardiac Lipotoxicity in Diabetic Cardiomyopathy via Regulation of Energy Metabolism.
Diabetes Metab Syndr Obes. 2025 Jan 27;18:217-231. doi: 10.2147/DMSO.S482346. eCollection 2025.
7
Microlipophagy from Simple to Complex Eukaryotes.
Cells. 2025 Jan 18;14(2):141. doi: 10.3390/cells14020141.
9
MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.
J Cell Biol. 2025 Mar 3;224(3). doi: 10.1083/jcb.202407068. Epub 2025 Jan 3.
10
Lipids associated with autophagy: mechanisms and therapeutic targets.
Cell Death Discov. 2024 Oct 30;10(1):460. doi: 10.1038/s41420-024-02224-8.

本文引用的文献

1
Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes.
J Cell Biol. 2019 Oct 7;218(10):3320-3335. doi: 10.1083/jcb.201803153. Epub 2019 Aug 7.
2
A human liver cell atlas reveals heterogeneity and epithelial progenitors.
Nature. 2019 Aug;572(7768):199-204. doi: 10.1038/s41586-019-1373-2. Epub 2019 Jul 10.
3
Current concepts in the neuropathogenesis of mucolipidosis type IV.
J Neurochem. 2019 Mar;148(5):669-689. doi: 10.1111/jnc.14462. Epub 2018 Aug 30.
5
Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes.
Science. 2017 Nov 10;358(6364):807-813. doi: 10.1126/science.aan6298. Epub 2017 Oct 26.
6
Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation.
FASEB J. 2018 Feb;32(2):782-794. doi: 10.1096/fj.201700220RR. Epub 2018 Jan 4.
7
Triglyceride Synthesis by DGAT1 Protects Adipocytes from Lipid-Induced ER Stress during Lipolysis.
Cell Metab. 2017 Aug 1;26(2):407-418.e3. doi: 10.1016/j.cmet.2017.07.012.
9
Breaking fat: The regulation and mechanisms of lipophagy.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Oct;1862(10 Pt B):1178-1187. doi: 10.1016/j.bbalip.2017.06.008. Epub 2017 Jun 20.
10
The constitutive lipid droplet protein PLIN2 regulates autophagy in liver.
Autophagy. 2017 Jul 3;13(7):1130-1144. doi: 10.1080/15548627.2017.1319544. Epub 2017 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验