Suppr超能文献

该化疗药物 CX-5461 的主要细胞毒性机制是拓扑异构酶 II 中毒。

The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning.

机构信息

Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115.

Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4053-4060. doi: 10.1073/pnas.1921649117. Epub 2020 Feb 10.

Abstract

Small molecules can affect many cellular processes. The disambiguation of these effects to identify the causative mechanisms of cell death is extremely challenging. This challenge impacts both clinical development and the interpretation of chemical genetic experiments. CX-5461 was developed as a selective RNA polymerase I inhibitor, but recent evidence suggests that it may cause DNA damage and induce G-quadraplex formation. Here we use three complimentary data mining modalities alongside biochemical and cell biological assays to show that CX-5461 exerts its primary cytotoxic activity through topoisomerase II poisoning. We then show that acquired resistance to CX-5461 in previously sensitive lymphoma cells confers collateral resistance to the topoisomerase II poison doxorubicin. Doxorubicin is already a frontline chemotherapy in a variety of hematopoietic malignancies, and CX-5461 is being tested in relapse/refractory hematopoietic tumors. Our data suggest that the mechanism of cell death induced by CX-5461 is critical for rational clinical development in these patients. Moreover, CX-5461 usage as a specific chemical genetic probe of RNA polymerase I function is challenging to interpret. Our multimodal data-driven approach is a useful way to detangle the intended and unintended mechanisms of drug action across diverse essential cellular processes.

摘要

小分子可以影响许多细胞过程。要明确这些作用以确定细胞死亡的因果机制极具挑战性。这一挑战不仅影响临床开发,也影响化学遗传学实验的解读。CX-5461 被开发为一种选择性 RNA 聚合酶 I 抑制剂,但最近的证据表明,它可能会导致 DNA 损伤并诱导 G-四链体形成。在这里,我们使用三种互补的数据挖掘模式以及生化和细胞生物学测定来表明,CX-5461 通过拓扑异构酶 II 中毒发挥其主要细胞毒性作用。然后,我们表明先前对 CX-5461 敏感的淋巴瘤细胞对拓扑异构酶 II 毒药阿霉素的获得性耐药赋予了交叉耐药性。阿霉素已在多种血液恶性肿瘤中作为一线化疗药物使用,而 CX-5461 正在复发/难治性血液肿瘤中进行测试。我们的数据表明,CX-5461 诱导细胞死亡的机制对这些患者的合理临床开发至关重要。此外,将 CX-5461 用作 RNA 聚合酶 I 功能的特定化学遗传探针的用途具有挑战性,难以解释。我们的多模式数据驱动方法是一种有用的方法,可以梳理不同基本细胞过程中药物作用的预期和非预期机制。

相似文献

1
The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4053-4060. doi: 10.1073/pnas.1921649117. Epub 2020 Feb 10.
5
Topoisomerase levels determine chemotherapy response in vitro and in vivo.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9053-8. doi: 10.1073/pnas.0803513105. Epub 2008 Jun 23.
6
The rRNA synthesis inhibitor CX-5461 may induce autophagy that inhibits anticancer drug-induced cell damage to leukemia cells.
Biosci Biotechnol Biochem. 2020 Nov;84(11):2319-2326. doi: 10.1080/09168451.2020.1801378. Epub 2020 Aug 15.
7
The role of topoisomerases and RNA transcription in the action of the antitumour benzonaphthyridine derivative SN 28049.
Cancer Chemother Pharmacol. 2008 Oct;62(5):753-62. doi: 10.1007/s00280-007-0660-z. Epub 2008 Jan 3.
8
Action of SN 28049, a new DNA binding topoisomerase II-directed antitumour drug: comparison with doxorubicin and etoposide.
Invest New Drugs. 2011 Oct;29(5):1102-10. doi: 10.1007/s10637-010-9473-8. Epub 2010 Jun 22.
9
Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth.
Cancer Res. 2011 Feb 15;71(4):1418-30. doi: 10.1158/0008-5472.CAN-10-1728. Epub 2010 Dec 15.
10
Alternative splicing of human telomerase reverse transcriptase in gliomas and its modulation mediated by CX-5461.
J Exp Clin Cancer Res. 2018 Apr 10;37(1):78. doi: 10.1186/s13046-018-0749-8.

引用本文的文献

1
Ribosome Biogenesis and Function in Cancer: From Mechanisms to Therapy.
Cancers (Basel). 2025 Jul 31;17(15):2534. doi: 10.3390/cancers17152534.
2
Ribosomal RNA transcription regulates splicing through ribosomal protein RPL22.
Cell Chem Biol. 2025 Jul 17;32(7):908-925.e9. doi: 10.1016/j.chembiol.2025.05.012. Epub 2025 Jun 18.
3
The G-quadruplex ligand CX-5461: an innovative candidate for disease treatment.
J Transl Med. 2025 Apr 18;23(1):457. doi: 10.1186/s12967-025-06473-8.
5
Inhibition of Ribosome Biogenesis In Vivo Causes p53-Dependent Death and p53-Independent Dysfunction.
Cell Mol Gastroenterol Hepatol. 2025;19(7):101496. doi: 10.1016/j.jcmgh.2025.101496. Epub 2025 Mar 11.
6
Advances in research on malignant tumors and targeted agents for TOP2A (Review).
Mol Med Rep. 2025 Feb;31(2). doi: 10.3892/mmr.2024.13415. Epub 2024 Dec 13.
7
An RNA damage response network mediates the lethality of 5-FU in colorectal cancer.
Cell Rep Med. 2024 Oct 15;5(10):101778. doi: 10.1016/j.xcrm.2024.101778. Epub 2024 Oct 7.
8
The unique Pt(II)-induced nucleolar stress response and its deviation from DNA damage response pathways.
J Biol Chem. 2024 Nov;300(11):107858. doi: 10.1016/j.jbc.2024.107858. Epub 2024 Oct 5.
9
Molecular basis of CX-5461-induced DNA damage response in primary vascular smooth muscle cells.
Heliyon. 2024 Aug 30;10(17):e37227. doi: 10.1016/j.heliyon.2024.e37227. eCollection 2024 Sep 15.
10
A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs.
Molecules. 2024 Aug 1;29(15):3653. doi: 10.3390/molecules29153653.

本文引用的文献

1
Chemical genetics in drug discovery.
Curr Opin Syst Biol. 2017 Aug;4:35-42. doi: 10.1016/j.coisb.2017.05.020.
2
Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials.
Sci Transl Med. 2019 Sep 11;11(509). doi: 10.1126/scitranslmed.aaw8412.
4
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature. 2019 May;569(7757):503-508. doi: 10.1038/s41586-019-1186-3. Epub 2019 May 8.
5
Identification of the RNA polymerase I-RNA interactome.
Nucleic Acids Res. 2018 Nov 16;46(20):11002-11013. doi: 10.1093/nar/gky779.
6
Nucleolar residence of the seckel syndrome protein TRAIP is coupled to ribosomal DNA transcription.
Nucleic Acids Res. 2018 Nov 2;46(19):10119-10131. doi: 10.1093/nar/gky775.
7
Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review.
Contemp Clin Trials Commun. 2018 Aug 7;11:156-164. doi: 10.1016/j.conctc.2018.08.001. eCollection 2018 Sep.
8
A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity.
Cell. 2018 Jul 12;174(2):391-405.e19. doi: 10.1016/j.cell.2018.05.043. Epub 2018 Jun 21.
9
mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding.
Cell. 2018 Jul 12;174(2):338-349.e20. doi: 10.1016/j.cell.2018.05.042. Epub 2018 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验