Suppr超能文献

核糖体RNA转录通过核糖体蛋白RPL22调节剪接。

Ribosomal RNA transcription regulates splicing through ribosomal protein RPL22.

作者信息

Fan Wenjun, Liu Hester, Stachelek Gregory C, Begum Asma, Davis Catherine E, Dorado Tony E, Ernst Glen, Reinhold William C, Ozbek Busra, Zheng Qizhi, De Marzo Angelo M, Rajeshkumar N V, Barrow James C, Laiho Marikki

机构信息

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

Lieber Institute for Brain Development, Baltimore, MD 21205, USA.

出版信息

Cell Chem Biol. 2025 Jul 17;32(7):908-925.e9. doi: 10.1016/j.chembiol.2025.05.012. Epub 2025 Jun 18.

Abstract

Ribosome biosynthesis is a cancer vulnerability targeted by inhibiting RNA polymerase I (Pol I) transcription. We developed specific Pol I inhibitors that activate a ribotoxic stress pathway to uncover drivers of sensitivity. Integrating multi-omics and drug response data from a large cancer cell panel, we found that RPL22 frameshift mutations confer Pol I inhibitor sensitivity. Mechanistically, RPL22 interacts directly with 28S rRNA and mRNA splice junctions, acting as a splicing regulator. RPL22 deficiency, intensified by 28S rRNA sequestration, promotes splicing of its paralog RPL22L1 and the p53 negative regulator MDM4. Both chemical and genetic inhibition of rRNA synthesis broadly remodel mRNA splicing controlling hundreds of targets. Notably, RPL22-dependent alternative splicing is reversed by Pol I inhibition, revealing a non-canonical ribotoxic stress-initiated tumor suppressive pathway. This study uncovers a robust mechanism linking rRNA synthesis activity to splicing, coordinated by the ribosomal protein RPL22.

摘要

核糖体生物合成是通过抑制RNA聚合酶I(Pol I)转录来靶向的癌症脆弱点。我们开发了特异性Pol I抑制剂,其可激活核糖体毒性应激途径以揭示敏感性驱动因素。整合来自大型癌细胞系的多组学和药物反应数据,我们发现RPL22移码突变赋予Pol I抑制剂敏感性。从机制上讲,RPL22直接与28S rRNA和mRNA剪接接头相互作用,作为剪接调节因子发挥作用。28S rRNA隔离加剧的RPL22缺陷促进其旁系同源物RPL22L1和p53负调节因子MDM4的剪接。rRNA合成的化学和基因抑制广泛重塑控制数百个靶点的mRNA剪接。值得注意的是,Pol I抑制可逆转RPL22依赖性可变剪接,揭示了一种非经典的核糖体毒性应激引发的肿瘤抑制途径。本研究揭示了一种由核糖体蛋白RPL22协调的将rRNA合成活性与剪接联系起来的强大机制。

相似文献

1
Ribosomal RNA transcription regulates splicing through ribosomal protein RPL22.
Cell Chem Biol. 2025 Jul 17;32(7):908-925.e9. doi: 10.1016/j.chembiol.2025.05.012. Epub 2025 Jun 18.
2
Ribosomal RNA transcription governs splicing through ribosomal protein RPL22.
bioRxiv. 2024 Aug 16:2024.08.15.608201. doi: 10.1101/2024.08.15.608201.
3
RPL22 links ribosome biogenesis, RNA splicing, and sensitivity to RNA polymerase I inhibition.
Cell Chem Biol. 2025 Jul 17;32(7):899-901. doi: 10.1016/j.chembiol.2025.06.001.
5
RPL22 is a tumor suppressor in MSI-high cancers and a splicing regulator of MDM4.
Cell Rep. 2024 Aug 27;43(8):114622. doi: 10.1016/j.celrep.2024.114622. Epub 2024 Aug 14.
7
NBS1 facilitates preribosomal RNA biogenesis.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2422029122. doi: 10.1073/pnas.2422029122. Epub 2025 Mar 11.
8
Ribosomal Proteins Rpl22 and Rpl22l1 Control Morphogenesis by Regulating Pre-mRNA Splicing.
Cell Rep. 2017 Jan 10;18(2):545-556. doi: 10.1016/j.celrep.2016.12.034.
9
RPL22 is a tumor suppressor in MSI-high cancers and a key splicing regulator of MDM4.
bioRxiv. 2023 Dec 10:2023.12.10.570873. doi: 10.1101/2023.12.10.570873.
10
Focal adhesion kinase promotes ribosome biogenesis to drive advanced thyroid cancer cell growth and survival.
Front Oncol. 2025 May 19;15:1252544. doi: 10.3389/fonc.2025.1252544. eCollection 2025.

本文引用的文献

1
RPL22 is a tumor suppressor in MSI-high cancers and a splicing regulator of MDM4.
Cell Rep. 2024 Aug 27;43(8):114622. doi: 10.1016/j.celrep.2024.114622. Epub 2024 Aug 14.
2
The ribosomal protein L22 binds the MDM4 pre-mRNA and promotes exon skipping to activate p53 upon nucleolar stress.
Cell Rep. 2024 Aug 27;43(8):114610. doi: 10.1016/j.celrep.2024.114610. Epub 2024 Aug 7.
3
Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers.
Nature. 2024 May;629(8011):443-449. doi: 10.1038/s41586-024-07350-y. Epub 2024 Apr 24.
4
ATR inhibition induces synthetic lethality in mismatch repair-deficient cells and augments immunotherapy.
Genes Dev. 2023 Oct 1;37(19-20):929-943. doi: 10.1101/gad.351084.123. Epub 2023 Nov 6.
5
Comprehensive mapping of cell fates in microsatellite unstable cancer cells supports dual targeting of WRN and ATR.
Genes Dev. 2023 Oct 1;37(19-20):913-928. doi: 10.1101/gad.351085.123. Epub 2023 Nov 6.
6
Expression of RNA polymerase I catalytic core is influenced by RPA12.
PLoS One. 2023 May 11;18(5):e0285660. doi: 10.1371/journal.pone.0285660. eCollection 2023.
7
Construction and validation of customized genomes for human and mouse ribosomal DNA mapping.
J Biol Chem. 2023 Jun;299(6):104766. doi: 10.1016/j.jbc.2023.104766. Epub 2023 Apr 28.
8
mRNA decoding in human is kinetically and structurally distinct from bacteria.
Nature. 2023 May;617(7959):200-207. doi: 10.1038/s41586-023-05908-w. Epub 2023 Apr 5.
9
Regulation of RNA Polymerase I Stability and Function.
Cancers (Basel). 2022 Nov 24;14(23):5776. doi: 10.3390/cancers14235776.
10
RNA Polymerase I Is Uniquely Vulnerable to the Small-Molecule Inhibitor BMH-21.
Cancers (Basel). 2022 Nov 11;14(22):5544. doi: 10.3390/cancers14225544.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验