Mair Gunnar, Daiß Julia L, Engel Christoph, Panov Konstantin I
School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5D, United Kingdom.
Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf641.
Ribosome biogenesis is essential for the rapid proliferation and life cycle transitions of Plasmodium falciparum, the causative agent of malaria. In eukaryotes, ribosomal RNA synthesis is carried out by RNA polymerase I (Pol I), highly specialized transcriptional machinery. This review provides a comparative analysis of Pol I transcription apparatus in yeast and humans, serving as a reference framework to examine its evolutionary divergence in P. falciparum and related apicomplexans and alveolates. Bioinformatic analyses revealed that some of these organisms lack any identifiable homologues or orthologs of several canonical eukaryotic transcription factors essential for Pol I-mediated transcription, including initiation factor RRN3, activator UBF, and all specific subunits of the promoter recognition complexes. Interestingly, the parasite retains core Pol I subunits, incorporating unique parasite-specific structural domains characterized through AI-based protein complex modeling of P. falciparum Pol I. These adaptations may compensate for the absence of traditional regulatory factors, enabling the parasite to employ distinct mechanisms for promoter recognition and transcription initiation. The substantial differences between parasite and host Pol I transcription machinery create potential targets for therapeutic intervention with parasite-specific elements representing potential drug targets. By integrating evolutionary, structural, and functional perspectives, this review advances our understanding of Pol I transcription in alveolates and its implications for the development of novel antimalarial strategies.
核糖体生物合成对于疟原虫(疟疾的病原体)的快速增殖和生命周期转变至关重要。在真核生物中,核糖体RNA合成由RNA聚合酶I(Pol I)进行,这是一种高度专业化的转录机制。本综述对酵母和人类中的Pol I转录装置进行了比较分析,作为一个参考框架,以研究其在恶性疟原虫及相关顶复门和囊泡虫中的进化差异。生物信息学分析表明,这些生物体中的一些缺乏几种对Pol I介导的转录至关重要的典型真核转录因子的任何可识别的同源物或直系同源物,包括起始因子RRN3、激活因子UBF以及启动子识别复合物的所有特定亚基。有趣的是,该寄生虫保留了Pol I核心亚基,并通过基于人工智能的恶性疟原虫Pol I蛋白质复合物建模确定了独特的寄生虫特异性结构域。这些适应性变化可能弥补了传统调节因子的缺失,使寄生虫能够采用不同的机制进行启动子识别和转录起始。寄生虫和宿主Pol I转录机制之间的巨大差异为治疗干预创造了潜在靶点,其中寄生虫特异性元件代表潜在的药物靶点。通过整合进化、结构和功能等方面的观点,本综述增进了我们对囊泡虫中Pol I转录的理解及其对新型抗疟策略开发的意义。