Suppr超能文献

X 射线光电子能谱探测低能电子对脱氧腺嘌呤核苷酸的直接损伤。

Direct Damage of Deoxyadenosine Monophosphate by Low-Energy Electrons Probed by X-ray Photoelectron Spectroscopy.

出版信息

J Phys Chem B. 2020 Mar 5;124(9):1585-1591. doi: 10.1021/acs.jpcb.9b08971. Epub 2020 Feb 25.

Abstract

Low-energy (3-25 eV) electron interactions with multilayers of 2'-deoxyadenosine 5'-monophosphate (dAMP) were probed using X-ray photoelectron spectroscopy (XPS). Understanding how electrons damage the nucleotide dAMP, which is a building block of DNA, can give insight into how the DNA undergoes radiation damage. Chemical modifications to the constituent units of the nucleotide were revealed in situ through monitoring of the O 1s, C 1s, and N 1s elemental transitions. It is shown that direct electron irradiation causes decomposition of both the base and sugar subunits, as well as cleavage of glycosidic and phosphoester bonds. Incident electrons undergo inelastic energy losses, including creation of core-excited resonances above 3-4 eV. In the condensed phase, these resonances decay via autoionization, producing electronically excited targets and <3 eV electrons. The excited states dissociate and the slow (<3 eV) electrons are captured by neighboring molecules, forming molecular shape resonances that can lead to bond rupture. Since the observed chemical changes were similar at all incident electron energies studied, they can be primarily attributed to formation and decay of transient negative ions. Damage enhancements in the energy ranges typical of all scattering resonances are expected, with the damage probability dominated by the low-energy shape resonances.

摘要

使用 X 射线光电子能谱(XPS)探测低能(3-25 eV)电子与 2'-脱氧腺苷 5'-单磷酸(dAMP)多层之间的相互作用。了解电子如何破坏核苷酸 dAMP(DNA 的组成部分)可以深入了解 DNA 如何受到辐射损伤。通过监测 O 1s、C 1s 和 N 1s 元素跃迁,原位揭示了核苷酸组成单元的化学修饰。结果表明,直接电子辐照会导致碱基和糖亚基分解,以及糖苷和磷酸酯键断裂。入射电子会经历非弹性能量损失,包括在 3-4 eV 以上产生的核心激发共振。在凝聚相中,这些共振通过自电离衰减,产生电子激发的靶标和<3 eV 的电子。激发态解离,慢(<3 eV)电子被相邻分子捕获,形成可能导致键断裂的分子形状共振。由于在所有研究的入射电子能量下观察到的化学变化相似,因此它们主要归因于瞬态负离子的形成和衰减。预计在所有散射共振典型的能量范围内会增强损伤,损伤概率主要由低能形状共振决定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验