Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
Autophagy. 2021 Mar;17(3):626-639. doi: 10.1080/15548627.2020.1725402. Epub 2020 Feb 11.
Nucleophagy, the mechanism for autophagic degradation of nuclear material, occurs in both a macro- and micronucleophagic manner. Upon nitrogen deprivation, we observed, in an in-depth fluorescence microscopy study, the formation of micronuclei: small parts of superfluous nuclear components surrounded by perinuclear ER. We identified two types of micronuclei associated with a corresponding autophagic mode. Our results showed that macronucleophagy degraded these smaller micronuclei. Engulfed in Atg8-positive phagophores and containing cargo receptor Atg39, macronucleophagic structures revealed finger-like extensions when observed in 3-dimensional reconstitutions of fluorescence microscopy images, suggesting directional growth. Interestingly, in the late stages of phagophore elongation, the adjacent vacuolar membrane showed a reduction of integral membrane protein Pho8. This change in membrane composition could indicate the formation of a specialized vacuolar domain, required for autophagosomal fusion. Significantly larger micronuclei formed at nucleus vacuole junctions and were identified as a substrate of piecemeal microautophagy of the nucleus (PMN), by the presence of the integral membrane protein Nvj1. Micronuclei sequestered by vacuolar invaginations also contained Atg39. A detailed investigation revealed that both Atg39 and Atg8 accumulated between the vacuolar tips. These findings suggest a role for Atg39 in micronucleophagy. Indeed, following the degradation of Nvj1, an exclusive substrate of PMN, in immunoblots, we could confirm the essential role of Atg39 for PMN. Our study thus details the involvement of Atg8 in both macronucleophagy and PMN and identifies Atg39 as the general cargo receptor for nucleophagic processes. DIC: Differential interference contrast, FWHM: Full width at half maximum, IQR: Interquartile range, MIPA: Micropexophagy-specific membrane apparatus, NLS: Nuclear localization signal, NVJ: Nucleus vacuole junction, PMN: Piecemeal microautophagy of the nucleus, pnER: Perinuclear ER.
核噬作用,即核物质自噬降解的机制,以巨核噬和微核噬的方式发生。在氮饥饿条件下,我们通过深入的荧光显微镜研究观察到微核的形成:多余核成分的小部分被核周内质网(pnER)包围。我们确定了与相应自噬模式相关的两种类型的微核。我们的结果表明,巨核噬作用降解了这些较小的微核。被 Atg8 阳性的吞噬体吞噬,并含有货物受体 Atg39,巨核噬作用结构在荧光显微镜图像的 3D 重构中观察到指状延伸,表明其具有方向性生长。有趣的是,在吞噬体延伸的后期阶段,相邻的液泡膜显示出完整膜蛋白 Pho8 的减少。这种膜成分的变化可能表明形成了一种特殊的液泡结构域,这是自噬体融合所必需的。在核液泡连接处形成的明显更大的微核被鉴定为核片段微自噬(PMN)的底物,通过完整膜蛋白 Nvj1 的存在来识别。被液泡内陷隔离的微核也含有 Atg39。详细的研究表明,Atg39 和 Atg8 都在液泡尖端之间积累。这些发现表明 Atg39 在微核噬作用中起作用。事实上,在免疫印迹中降解 Nvj1(PMN 的唯一底物)后,我们可以确认 Atg39 在 PMN 中的重要作用。因此,我们的研究详细说明了 Atg8 在巨核噬作用和 PMN 中的参与情况,并确定 Atg39 是核噬作用过程的通用货物受体。DIC:相差对比,FWHM:半峰全宽,IQR:四分位距,MIPA:微噬菌斑特异性膜装置,NLS:核定位信号,NVJ:核液泡连接,PMN:核片段微自噬,pnER:核周内质网。