Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, China.
Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, Lishui, China.
FASEB J. 2020 Apr;34(4):5420-5434. doi: 10.1096/fj.201902895R. Epub 2020 Feb 20.
Activated oncogenes and loss of tumor suppressors contribute to reprogrammed energy metabolism and induce aerobic glycolysis, also known as Warburg effect. MicroRNAs are profoundly implicated in human malignancies by inhibiting translation of multiple mRNA targets. Using hepatocellular carcinoma (HCC) molecular profiles from The Cancer Genome Atlas (TCGA), we identified a handful of dysregulated microRNA in HCC glycolysis, especially miR-34c-3p. Antagonization of miR-34c-3p inhibited the lactate production, glucose consumption, extracellular acidification rate (ECAR), and aggressive proliferation in HCC cells. Hijacking glycolysis by 2-deoxy-d-glucose or galactose largely abrogated the suppressive effects of miR-34c-3p inhibition in HCC. Membrane associated guanylate kinase, WW, and PDZ domain containing 3 (MAGI3) is then identified as a direct functional target of miR-34c-3p in regulating HCC glycolysis and oncogenic activities. Mechanistically, MAGI3 physically interacted with β-catenin to regulate its transcriptional activity and c-Myc expression, which further facilitates the Warburg effect by increasing expression of glycolytic genes including HK2, PFKL, and LDHA. Moreover, overexpressed miR-34c-3p and reduced MAGI3 predicted poor clinical outcome and was closely associated with the maximum standard uptake value (SUVmax) in HCC patients who received preoperative F-FDG PET/CT. Our findings elucidate critical several microRNAs implicated in HCC glycolysis and reveal a novel function of miR-34c-3p/MAGI3 axis in Warburg effect through regulating β-catenin activity.
激活的癌基因和肿瘤抑制因子的丧失导致重编程的能量代谢,并诱导有氧糖酵解,也称为沃伯格效应。microRNAs 通过抑制多个 mRNA 靶标的翻译,在人类恶性肿瘤中有着深远的影响。利用癌症基因组图谱 (TCGA) 中的肝细胞癌 (HCC) 分子图谱,我们在 HCC 糖酵解中发现了少数几种失调的 microRNA,特别是 miR-34c-3p。miR-34c-3p 的拮抗作用抑制了 HCC 细胞中乳酸的产生、葡萄糖的消耗、细胞外酸化率 (ECAR) 和侵袭性增殖。2-脱氧-d-葡萄糖或半乳糖对糖酵解的“劫持”在很大程度上消除了 miR-34c-3p 抑制 HCC 的作用。随后,膜相关鸟苷酸激酶、WW 和 PDZ 结构域包含 3 (MAGI3) 被鉴定为 miR-34c-3p 在调节 HCC 糖酵解和致癌活性中的直接功能靶标。在机制上,MAGI3 与 β-catenin 相互作用,调节其转录活性和 c-Myc 表达,这进一步通过增加包括 HK2、PFKL 和 LDHA 在内的糖酵解基因的表达来促进沃伯格效应。此外,过表达的 miR-34c-3p 和减少的 MAGI3 预测 HCC 患者的临床预后不良,并且与接受术前 F-FDG PET/CT 的 HCC 患者的最大标准摄取值 (SUVmax) 密切相关。我们的研究结果阐明了几种参与 HCC 糖酵解的关键 microRNAs,并揭示了 miR-34c-3p/MAGI3 轴通过调节 β-catenin 活性在沃伯格效应中的新功能。