Suppr超能文献

在数字健康干预中应用自然语言处理的框架。

A Framework for Applying Natural Language Processing in Digital Health Interventions.

作者信息

Funk Burkhardt, Sadeh-Sharvit Shiri, Fitzsimmons-Craft Ellen E, Trockel Mickey Todd, Monterubio Grace E, Goel Neha J, Balantekin Katherine N, Eichen Dawn M, Flatt Rachael E, Firebaugh Marie-Laure, Jacobi Corinna, Graham Andrea K, Hoogendoorn Mark, Wilfley Denise E, Taylor C Barr

机构信息

Leuphana University, Institute of Information Systems, Lueneburg, Germany.

Palo Alto University, Center for m2Health, Palo Alto, CA, United States.

出版信息

J Med Internet Res. 2020 Feb 19;22(2):e13855. doi: 10.2196/13855.

Abstract

BACKGROUND

Digital health interventions (DHIs) are poised to reduce target symptoms in a scalable, affordable, and empirically supported way. DHIs that involve coaching or clinical support often collect text data from 2 sources: (1) open correspondence between users and the trained practitioners supporting them through a messaging system and (2) text data recorded during the intervention by users, such as diary entries. Natural language processing (NLP) offers methods for analyzing text, augmenting the understanding of intervention effects, and informing therapeutic decision making.

OBJECTIVE

This study aimed to present a technical framework that supports the automated analysis of both types of text data often present in DHIs. This framework generates text features and helps to build statistical models to predict target variables, including user engagement, symptom change, and therapeutic outcomes.

METHODS

We first discussed various NLP techniques and demonstrated how they are implemented in the presented framework. We then applied the framework in a case study of the Healthy Body Image Program, a Web-based intervention trial for eating disorders (EDs). A total of 372 participants who screened positive for an ED received a DHI aimed at reducing ED psychopathology (including binge eating and purging behaviors) and improving body image. These users generated 37,228 intervention text snippets and exchanged 4285 user-coach messages, which were analyzed using the proposed model.

RESULTS

We applied the framework to predict binge eating behavior, resulting in an area under the curve between 0.57 (when applied to new users) and 0.72 (when applied to new symptom reports of known users). In addition, initial evidence indicated that specific text features predicted the therapeutic outcome of reducing ED symptoms.

CONCLUSIONS

The case study demonstrates the usefulness of a structured approach to text data analytics. NLP techniques improve the prediction of symptom changes in DHIs. We present a technical framework that can be easily applied in other clinical trials and clinical presentations and encourage other groups to apply the framework in similar contexts.

摘要

背景

数字健康干预措施(DHIs)有望以可扩展、经济实惠且有实证支持的方式减轻目标症状。涉及指导或临床支持的数字健康干预措施通常从两个来源收集文本数据:(1)用户与通过消息系统为其提供支持的训练有素的从业者之间的开放式通信,以及(2)用户在干预期间记录的文本数据,如日记条目。自然语言处理(NLP)提供了分析文本、增强对干预效果的理解并为治疗决策提供信息的方法。

目的

本研究旨在提出一个技术框架,以支持对数字健康干预措施中常见的两种文本数据进行自动化分析。该框架生成文本特征,并有助于构建统计模型以预测目标变量,包括用户参与度、症状变化和治疗结果。

方法

我们首先讨论了各种自然语言处理技术,并展示了它们在所提出的框架中是如何实现的。然后,我们将该框架应用于“健康身体形象计划”的案例研究中,这是一项针对饮食失调(EDs)的基于网络的干预试验。共有372名筛查出饮食失调呈阳性的参与者接受了旨在减轻饮食失调精神病理学(包括暴饮暴食和清除行为)并改善身体形象的数字健康干预措施。这些用户生成了37228条干预文本片段,并交换了4285条用户与指导者之间的消息,使用所提出的模型对其进行了分析。

结果

我们应用该框架来预测暴饮暴食行为,曲线下面积在0.57(应用于新用户时)至0.72(应用于已知用户的新症状报告时)之间。此外,初步证据表明特定的文本特征预测了减轻饮食失调症状的治疗结果。

结论

该案例研究证明了结构化文本数据分析方法的实用性。自然语言处理技术改善了对数字健康干预措施中症状变化的预测。我们提出了一个可轻松应用于其他临床试验和临床报告的技术框架,并鼓励其他团队在类似背景下应用该框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c083/7059510/26bef0a62030/jmir_v22i2e13855_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验