Department of Biological Psychology, Vrije Universiteit, Amsterdam The Netherlands.
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.
Int J Epidemiol. 2020 Aug 1;49(4):1185-1193. doi: 10.1093/ije/dyaa013.
Mendelian randomization (MR) is widely used to unravel causal relationships in epidemiological studies. Whereas multiple MR methods have been developed to control for bias due to horizontal pleiotropy, their performance in the presence of other sources of bias, like non-random mating, has been mostly evaluated using simulated data. Empirical comparisons of MR estimators in such scenarios have yet to be conducted. Pleiotropy and non-random mating have been shown to account equally for the genetic correlation between height and educational attainment. Previous studies probing the causal nature of this association have produced conflicting results.
We estimated the causal effect of height on educational attainment in various MR models, including the MR-Egger and the MR-Direction of Causation (MR-DoC) models that correct for, or explicitly model, horizontal pleiotropy.
We reproduced the weak but positive association between height and education in the Netherlands Twin Register sample (P= 3.9 × 10-6). All MR analyses suggested that height has a robust, albeit small, causal effect on education. We showed via simulations that potential assortment for height and education had no effect on the causal parameter in the MR-DoC model. With the pleiotropic effect freely estimated, MR-DoC yielded a null finding.
Non-random mating may have a bearing on the results of MR studies based on unrelated individuals. Family data enable tests of causal relationships to be conducted more rigorously, and are recommended to triangulate results of MR studies assessing pairs of traits leading to non-random mate selection.
孟德尔随机化(MR)被广泛应用于解开流行病学研究中的因果关系。尽管已经开发出多种 MR 方法来控制由于水平多效性引起的偏差,但它们在存在其他偏差源(如非随机交配)的情况下的性能,大多是使用模拟数据进行评估的。在这种情况下,MR 估计器的实证比较尚未进行。多效性和非随机交配同样可以解释身高和教育程度之间的遗传相关性。先前研究探测这种关联的因果性质的结果存在矛盾。
我们在各种 MR 模型中估计了身高对教育程度的因果效应,包括校正或明确建模水平多效性的 MR-Egger 和 MR 因果关系方向(MR-DoC)模型。
我们在荷兰双胞胎登记样本中重现了身高和教育之间微弱但积极的关联(P=3.9×10-6)。所有 MR 分析都表明,身高对教育有稳健但较小的因果影响。我们通过模拟表明,身高和教育的潜在关联对 MR-DoC 模型中的因果参数没有影响。在自由估计多效性效应的情况下,MR-DoC 得出了一个零结果。
非随机交配可能会影响基于非相关个体的 MR 研究的结果。家庭数据可以更严格地进行因果关系的测试,并建议用于三角测量评估导致非随机配偶选择的两对特征的 MR 研究结果。