Suppr超能文献

射频波诱导的脂质氧化并通过铁蛋白铁介导导致铁蛋白标记的离子通道的激活。

Lipid Oxidation Induced by RF Waves and Mediated by Ferritin Iron Causes Activation of Ferritin-Tagged Ion Channels.

机构信息

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Cell Rep. 2020 Mar 10;30(10):3250-3260.e7. doi: 10.1016/j.celrep.2020.02.070.

Abstract

One approach to magnetogenetics uses radiofrequency (RF) waves to activate transient receptor potential channels (TRPV1 and TRPV4) that are coupled to cellular ferritins. The mechanisms underlying this effect are unclear and controversial. Theoretical calculations suggest that the heat produced by RF fields is likely orders of magnitude weaker than needed for channel activation. Using the FeRIC (Ferritin iron Redistribution to Ion Channels) system, we have uncovered a mechanism of activation of ferritin-tagged channels via a biochemical pathway initiated by RF disturbance of ferritin and mediated by ferritin-associated iron. We show that, in cells expressing TRPV channels, RF increases the levels of the labile iron pool in a ferritin-dependent manner. Free iron participates in chemical reactions, producing reactive oxygen species and oxidized lipids that ultimately activate the TRPV channels. This biochemical pathway predicts a similar RF-induced activation of other lipid-sensitive TRP channels and may guide future magnetogenetic designs.

摘要

一种磁遗传学方法使用射频 (RF) 波来激活与细胞铁蛋白偶联的瞬时受体电位通道 (TRPV1 和 TRPV4)。这种效应的机制尚不清楚且存在争议。理论计算表明,RF 场产生的热量可能比通道激活所需的量级弱得多。使用 FeRIC(铁蛋白铁重新分配到离子通道)系统,我们发现了一种通过铁蛋白紊乱和铁蛋白相关铁介导的生化途径激活铁蛋白标记通道的机制。我们表明,在表达 TRPV 通道的细胞中,RF 以铁蛋白依赖的方式增加了不稳定铁池的水平。游离铁参与化学反应,产生活性氧和氧化脂质,最终激活 TRPV 通道。这种生化途径预测其他脂质敏感的 TRP 通道也会受到类似的 RF 诱导激活,并且可能为未来的磁遗传学设计提供指导。

相似文献

1
2
Evaluating methods and protocols of ferritin-based magnetogenetics.
iScience. 2021 Sep 9;24(10):103094. doi: 10.1016/j.isci.2021.103094. eCollection 2021 Oct 22.
3
Electrophysiological Mechanisms and Validation of Ferritin-Based Magnetogenetics for Remote Control of Neurons.
J Neurosci. 2024 Jul 24;44(30):e1717232024. doi: 10.1523/JNEUROSCI.1717-23.2024.
4
Reactive Oxygen Species Activate a Ferritin-Linked TRPV4 Channel under a Static Magnetic Field.
ACS Chem Biol. 2024 May 17;19(5):1151-1160. doi: 10.1021/acschembio.4c00090. Epub 2024 Apr 22.
5
Uncovering a possible role of reactive oxygen species in magnetogenetics.
Sci Rep. 2020 Aug 4;10(1):13096. doi: 10.1038/s41598-020-70067-1.
6
Ca Overload Decreased Cellular Viability in Magnetic Hyperthermia without a Macroscopic Temperature Rise.
ACS Biomater Sci Eng. 2024 May 13;10(5):2995-3005. doi: 10.1021/acsbiomaterials.3c01875. Epub 2024 Apr 23.
8
Magnetic Entropy as a Proposed Gating Mechanism for Magnetogenetic Ion Channels.
Biophys J. 2019 Feb 5;116(3):454-468. doi: 10.1016/j.bpj.2019.01.003. Epub 2019 Jan 8.

引用本文的文献

1
Bidirectional regulation of motor circuits using magnetogenetic gene therapy.
Sci Adv. 2024 Oct 11;10(41):eadp9150. doi: 10.1126/sciadv.adp9150. Epub 2024 Oct 9.
2
Magnetogenetics as a promising tool for controlling cellular signaling pathways.
J Nanobiotechnology. 2024 Jun 10;22(1):327. doi: 10.1186/s12951-024-02616-z.
3
Electrophysiological Mechanisms and Validation of Ferritin-Based Magnetogenetics for Remote Control of Neurons.
J Neurosci. 2024 Jul 24;44(30):e1717232024. doi: 10.1523/JNEUROSCI.1717-23.2024.
4
Alternating magnetic fields drive stimulation of gene expression via generation of reactive oxygen species.
iScience. 2024 Feb 12;27(3):109186. doi: 10.1016/j.isci.2024.109186. eCollection 2024 Mar 15.
5
Modulating cell signalling in vivo with magnetic nanotransducers.
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00170-2. Epub 2022 Nov 17.
6
Magnetogenetic cell activation using endogenous ferritin.
bioRxiv. 2024 Apr 25:2023.06.20.545120. doi: 10.1101/2023.06.20.545120.
7
Enhancing ROS-Inducing Nanozyme through Intraparticle Electron Transport.
Small. 2024 Feb;20(6):e2305974. doi: 10.1002/smll.202305974. Epub 2023 Sep 28.
9
Applications of synthetic biology in medical and pharmaceutical fields.
Signal Transduct Target Ther. 2023 May 11;8(1):199. doi: 10.1038/s41392-023-01440-5.
10
Single pulse heating of a nanoparticle array for biological applications.
Nanoscale Adv. 2022 May 7;4(9):2090-2097. doi: 10.1039/D1NA00766A. Epub 2022 Feb 16.

本文引用的文献

1
Magneto is ineffective in controlling electrical properties of cerebellar Purkinje cells.
Nat Neurosci. 2020 Sep;23(9):1041-1043. doi: 10.1038/s41593-019-0475-3. Epub 2019 Sep 30.
2
Revaluation of magnetic properties of Magneto.
Nat Neurosci. 2020 Sep;23(9):1047-1050. doi: 10.1038/s41593-019-0473-5. Epub 2019 Sep 30.
3
Assessing the utility of Magneto to control neuronal excitability in the somatosensory cortex.
Nat Neurosci. 2020 Sep;23(9):1044-1046. doi: 10.1038/s41593-019-0474-4. Epub 2019 Sep 30.
6
Magnetic Entropy as a Proposed Gating Mechanism for Magnetogenetic Ion Channels.
Biophys J. 2019 Feb 5;116(3):454-468. doi: 10.1016/j.bpj.2019.01.003. Epub 2019 Jan 8.
9
Genetically Encoded Circuit for Remote Regulation of Cell Migration by Magnetic Fields.
ACS Synth Biol. 2018 Feb 16;7(2):718-726. doi: 10.1021/acssynbio.7b00415. Epub 2018 Jan 26.
10
Temperature-activated ion channels in neural crest cells confer maternal fever-associated birth defects.
Sci Signal. 2017 Oct 10;10(500):eaal4055. doi: 10.1126/scisignal.aal4055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验