Suppr超能文献

计算方法在药物筛选和设计中的应用综述。

A Review on Applications of Computational Methods in Drug Screening and Design.

机构信息

Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.

School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.

出版信息

Molecules. 2020 Mar 18;25(6):1375. doi: 10.3390/molecules25061375.

Abstract

Drug development is one of the most significant processes in the pharmaceutical industry. Various computational methods have dramatically reduced the time and cost of drug discovery. In this review, we firstly discussed roles of multiscale biomolecular simulations in identifying drug binding sites on the target macromolecule and elucidating drug action mechanisms. Then, virtual screening methods (e.g., molecular docking, pharmacophore modeling, and QSAR) as well as structure- and ligand-based classical/de novo drug design were introduced and discussed. Last, we explored the development of machine learning methods and their applications in aforementioned computational methods to speed up the drug discovery process. Also, several application examples of combining various methods was discussed. A combination of different methods to jointly solve the tough problem at different scales and dimensions will be an inevitable trend in drug screening and design.

摘要

药物研发是制药行业最重要的过程之一。各种计算方法极大地缩短了药物发现的时间和成本。在这篇综述中,我们首先讨论了多尺度生物分子模拟在识别靶大分子上的药物结合位点和阐明药物作用机制方面的作用。然后,介绍并讨论了虚拟筛选方法(例如分子对接、药效基团建模和 QSAR)以及基于结构和基于配体的经典/从头药物设计。最后,我们探讨了机器学习方法的发展及其在上述计算方法中的应用,以加速药物发现过程。此外,还讨论了结合多种方法的几个应用实例。将不同方法结合起来,共同解决不同尺度和维度的难题,将是药物筛选和设计的必然趋势。

相似文献

1
A Review on Applications of Computational Methods in Drug Screening and Design.
Molecules. 2020 Mar 18;25(6):1375. doi: 10.3390/molecules25061375.
2
Computational drug discovery.
Acta Pharmacol Sin. 2012 Sep;33(9):1131-40. doi: 10.1038/aps.2012.109. Epub 2012 Aug 27.
3
Machine learning approaches and their applications in drug discovery and design.
Chem Biol Drug Des. 2022 Jul;100(1):136-153. doi: 10.1111/cbdd.14057. Epub 2022 Apr 23.
4
Structure- and ligand-based drug design methods for the modeling of antimalarial agents: a review of updates from 2012 onwards.
J Biomol Struct Dyn. 2022;40(20):10481-10506. doi: 10.1080/07391102.2021.1932598. Epub 2021 Jun 15.
6
Application of Multiscale Simulation Tools on GPCRs. An Example with Angiotensin II Type 1 Receptor.
Methods Mol Biol. 2018;1824:431-448. doi: 10.1007/978-1-4939-8630-9_26.
7
Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects.
Methods Mol Biol. 2024;2714:1-20. doi: 10.1007/978-1-0716-3441-7_1.
10
Use of machine learning approaches for novel drug discovery.
Expert Opin Drug Discov. 2016;11(3):225-39. doi: 10.1517/17460441.2016.1146250.

引用本文的文献

4
BASIL DB: bioactive semantic integration and linking database.
J Biomed Semantics. 2025 Aug 13;16(1):14. doi: 10.1186/s13326-025-00336-3.
5
Deep learning enhanced deciphering of brain activity maps for discovery of therapeutics for brain disorders.
iScience. 2025 Jun 10;28(7):112868. doi: 10.1016/j.isci.2025.112868. eCollection 2025 Jul 18.
6
SaeGraphDTI: drug-target interaction prediction based on sequence attribute extraction and graph neural network.
BMC Bioinformatics. 2025 Jul 15;26(1):177. doi: 10.1186/s12859-025-06195-0.
8
Accurate Prediction of Drug Activity by Computational Methods: Importance of Thermal Capacity.
Molecules. 2025 Jun 12;30(12):2563. doi: 10.3390/molecules30122563.

本文引用的文献

2
A Molecularly Detailed Na1.5 Model Reveals a New Class I Antiarrhythmic Target.
JACC Basic Transl Sci. 2019 Oct 28;4(6):736-751. doi: 10.1016/j.jacbts.2019.06.002. eCollection 2019 Oct.
3
A Multiscale Agent-Based Model of Ductal Carcinoma In Situ.
IEEE Trans Biomed Eng. 2020 May;67(5):1450-1461. doi: 10.1109/TBME.2019.2938485. Epub 2019 Oct 8.
4
Multioutput Perturbation-Theory Machine Learning (PTML) Model of ChEMBL Data for Antiretroviral Compounds.
Mol Pharm. 2019 Oct 7;16(10):4200-4212. doi: 10.1021/acs.molpharmaceut.9b00538. Epub 2019 Aug 30.
7
Machine Learning for Molecular Modelling in Drug Design.
Biomolecules. 2019 Jun 4;9(6):216. doi: 10.3390/biom9060216.
8
Application of interpretable artificial neural networks to early monoclonal antibodies development.
Eur J Pharm Biopharm. 2019 Aug;141:81-89. doi: 10.1016/j.ejpb.2019.05.017. Epub 2019 May 18.
9
Mathematical modeling in cancer nanomedicine: a review.
Biomed Microdevices. 2019 Apr 4;21(2):40. doi: 10.1007/s10544-019-0380-2.
10
Multiscale Methods in Drug Design Bridge Chemical and Biological Complexity in the Search for Cures.
Nat Rev Chem. 2018 Apr;2(4). doi: 10.1038/s41570-018-0148. Epub 2018 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验