Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden.
Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 52 Huddinge, Sweden; Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia.
J Biol Chem. 2020 May 22;295(21):7224-7234. doi: 10.1074/jbc.RA120.012738. Epub 2020 Apr 2.
A detailed understanding of the molecular pathways for amyloid-β (Aβ) peptide aggregation from monomers into amyloid fibrils, a hallmark of Alzheimer's disease, is crucial for the development of diagnostic and therapeutic strategies. We investigate the molecular details of peptide fibrillization by perturbing this process through addition of differently charged metal ions. Here, we used a monovalent probe, the silver ion, that, similarly to divalent metal ions, binds to monomeric Aβ peptide and efficiently modulates Aβ fibrillization. On the basis of our findings, combined with our previous results on divalent zinc ions, we propose a model that links the microscopic metal-ion binding to Aβ monomers to its macroscopic impact on the peptide self-assembly observed in bulk experiments. We found that substoichiometric concentrations of the investigated metal ions bind specifically to the N-terminal region of Aβ, forming a dynamic, partially compact complex. The metal-ion bound state appears to be incapable of aggregation, effectively reducing the available monomeric Aβ pool for incorporation into fibrils. This is especially reflected in a decreased fibril-end elongation rate. However, because the bound state is significantly less stable than the amyloid state, Aβ peptides are only transiently redirected from fibril formation, and eventually almost all Aβ monomers are integrated into fibrils. Taken together, these findings unravel the mechanistic consequences of delaying Aβ aggregation weak metal-ion binding, quantitatively linking the contributions of specific interactions of metal ions with monomeric Aβ to their effects on bulk aggregation.
详细了解淀粉样蛋白-β(Aβ)肽从单体聚合形成淀粉样纤维的分子途径,这是阿尔茨海默病的一个标志,对于开发诊断和治疗策略至关重要。我们通过添加带不同电荷的金属离子来干扰这个过程,从而研究肽纤维形成的分子细节。在这里,我们使用了单价探针,即银离子,它与二价金属离子类似,与单体 Aβ 肽结合并有效地调节 Aβ 纤维形成。基于我们的发现,并结合我们之前关于二价锌离子的结果,我们提出了一个模型,将微观金属离子与 Aβ 单体的结合与其在体相实验中观察到的对肽自组装的宏观影响联系起来。我们发现,研究中的金属离子以亚化学计量浓度特异性结合到 Aβ 的 N 端区域,形成一个动态的、部分紧凑的复合物。金属离子结合状态似乎不能聚集,有效地减少了可用于掺入纤维的单体 Aβ 池。这在纤维末端延伸率的降低中尤为明显。然而,由于结合状态明显不如淀粉样状态稳定,Aβ 肽只是暂时从纤维形成中被转移,最终几乎所有的 Aβ 单体都被整合到纤维中。总的来说,这些发现揭示了延迟 Aβ 聚集的机制后果——弱金属离子结合,将金属离子与单体 Aβ 的特定相互作用的贡献与它们对体相聚集的影响定量联系起来。