Suppr超能文献

迈向 HCP 风格的猕猴连接组学:24 通道 3T 多通道线圈、MRI 序列和预处理。

Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.

机构信息

Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.

Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA; Department of Radiology, Washington University School of Medicine, St Louis, MO, USA; St. Luke's Hospital, St. Louis, Missouri, USA.

出版信息

Neuroimage. 2020 Jul 15;215:116800. doi: 10.1016/j.neuroimage.2020.116800. Epub 2020 Apr 8.

Abstract

Macaque monkeys are an important animal model where invasive investigations can lead to a better understanding of the cortical organization of primates including humans. However, the tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse sequence protocols) and image data preprocessing have lagged behind those developed for humans. To resolve the structural and functional characteristics of the smaller macaque brain, high spatial, temporal, and angular resolutions combined with high signal-to-noise ratio are required to ensure good image quality. To address these challenges, we developed a macaque 24-channel receive coil for 3-T MRI with parallel imaging capabilities. This coil enables adaptation of the Human Connectome Project (HCP) image acquisition protocols to the in-vivo macaque brain. In addition, we adapted HCP preprocessing methods to the macaque brain, including spatial minimal preprocessing of structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provides the necessary high signal-to-noise ratio and high efficiency in data acquisition, allowing four- and five-fold accelerations for dMRI and fMRI. Automated FreeSurfer segmentation of cortex, reconstruction of cortical surface, removal of artefacts and nuisance signals in fMRI, and distortion correction of dMRI all performed well, and the overall quality of basic neurobiological measures was comparable with those for the HCP. Analyses of functional connectivity in fMRI revealed high sensitivity as compared with those from publicly shared datasets. Tractography-based connectivity estimates correlated with tracer connectivity similarly to that achieved using ex-vivo dMRI. The resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical architecture and functional and structural connectivity using advanced methods that have previously only been available in studies of the human brain.

摘要

猕猴是一种重要的动物模型,通过对其进行侵入性研究,可以更好地了解灵长类动物(包括人类)的皮质组织。然而,用于非侵入性图像采集(例如 MRI RF 线圈和脉冲序列协议)和图像数据预处理的工具和方法落后于为人类开发的工具和方法。为了解决较小的猕猴大脑的结构和功能特征问题,需要高空间、高时间和高角度分辨率,结合高信噪比,以确保良好的图像质量。为了解决这些挑战,我们开发了一种用于 3-T MRI 的猕猴 24 通道接收线圈,该线圈具有并行成像功能。该线圈使人类连接组计划(HCP)的图像采集协议能够适应活体猕猴大脑。此外,我们还将 HCP 预处理方法改编为猕猴大脑,包括结构、功能磁共振成像(fMRI)和弥散磁共振成像(dMRI)的空间最小预处理。该线圈提供了必要的高信噪比和高效率的数据采集,允许对 dMRI 和 fMRI 进行四到五倍加速。皮层的自动 FreeSurfer 分割、皮层表面重建、fMRI 中的伪影和干扰信号去除以及 dMRI 的失真校正都表现良好,基本神经生物学测量的整体质量与 HCP 相当。与公开共享数据集相比,fMRI 中的功能连接分析显示出较高的灵敏度。基于束路追踪的连接估计与使用离体 dMRI 获得的连接相似。使用这种 HCP 风格的活体猕猴 MRI 数据,通过使用以前仅在人类大脑研究中可用的高级方法,分析皮质结构以及功能和结构连接具有很大的潜力。

相似文献

1
Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.
Neuroimage. 2020 Jul 15;215:116800. doi: 10.1016/j.neuroimage.2020.116800. Epub 2020 Apr 8.
2
The nonhuman primate neuroimaging and neuroanatomy project.
Neuroimage. 2021 Apr 1;229:117726. doi: 10.1016/j.neuroimage.2021.117726. Epub 2021 Jan 20.
3
Ultra-high field (10.5 T) resting state fMRI in the macaque.
Neuroimage. 2020 Dec;223:117349. doi: 10.1016/j.neuroimage.2020.117349. Epub 2020 Sep 6.
4
Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission.
Neuroimage. 2019 Jan 1;184:396-408. doi: 10.1016/j.neuroimage.2018.09.038. Epub 2018 Sep 17.
5
A Whole-Cortex Probabilistic Diffusion Tractography Connectome.
eNeuro. 2021 Feb 23;8(1). doi: 10.1523/ENEURO.0416-20.2020. Print 2021 Jan-Feb.
6
XTRACT - Standardised protocols for automated tractography in the human and macaque brain.
Neuroimage. 2020 Aug 15;217:116923. doi: 10.1016/j.neuroimage.2020.116923. Epub 2020 May 11.
7
FOD-Net: A deep learning method for fiber orientation distribution angular super resolution.
Med Image Anal. 2022 Jul;79:102431. doi: 10.1016/j.media.2022.102431. Epub 2022 Apr 6.
8
Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:80-104. doi: 10.1016/j.neuroimage.2013.05.012. Epub 2013 May 21.
9
Resolution and b value dependent structural connectome in ex vivo mouse brain.
Neuroimage. 2022 Jul 15;255:119199. doi: 10.1016/j.neuroimage.2022.119199. Epub 2022 Apr 10.
10
The minimal preprocessing pipelines for the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.

引用本文的文献

1
High-resolution fMRI reveals a dorsal brain pathway selective for conspecific vocalizations in macaques.
Imaging Neurosci (Camb). 2025 Aug 13;3. doi: 10.1162/IMAG.a.108. eCollection 2025.
2
3
MEBRAINS 1.0: A new population-based macaque atlas.
Imaging Neurosci (Camb). 2024 Feb 2;2. doi: 10.1162/imag_a_00077. eCollection 2024.
4
Spectral imprint of structural embedding in effective connectivity.
bioRxiv. 2025 Jun 25:2025.06.19.660638. doi: 10.1101/2025.06.19.660638.
5
In vivo submillimeter diffusion MRI dataset of 9 macaque brains curated for tractography.
Sci Data. 2025 Jul 11;12(1):1199. doi: 10.1038/s41597-025-05350-9.
7
Geometric influences on the regional organization of the mammalian brain.
bioRxiv. 2025 Feb 1:2025.01.30.635820. doi: 10.1101/2025.01.30.635820.
8
Charting cortical-layer specific area boundaries using Gibbs' ringing attenuated T1w/T2w-FLAIR myelin MRI.
bioRxiv. 2024 Nov 13:2024.09.27.615294. doi: 10.1101/2024.09.27.615294.
9
The Generalizability of Cortical Area Parcellations Across Early Childhood.
bioRxiv. 2025 Feb 23:2024.09.09.612056. doi: 10.1101/2024.09.09.612056.
10
Brain Charts for the Rhesus Macaque Lifespan.
bioRxiv. 2024 Aug 30:2024.08.28.610193. doi: 10.1101/2024.08.28.610193.

本文引用的文献

1
Cross-species functional alignment reveals evolutionary hierarchy within the connectome.
Neuroimage. 2020 Dec;223:117346. doi: 10.1016/j.neuroimage.2020.117346. Epub 2020 Sep 9.
3
Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones.
Nat Neurosci. 2019 Jul;22(7):1057-1060. doi: 10.1038/s41593-019-0410-7. Epub 2019 Jun 10.
4
Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes.
Neuroimage. 2019 Mar;188:598-615. doi: 10.1016/j.neuroimage.2018.12.015. Epub 2018 Dec 8.
5
Functional MRI in Macaque Monkeys during Task Switching.
J Neurosci. 2018 Dec 12;38(50):10619-10630. doi: 10.1523/JNEUROSCI.1539-18.2018. Epub 2018 Oct 24.
6
An Open Resource for Non-human Primate Imaging.
Neuron. 2018 Oct 10;100(1):61-74.e2. doi: 10.1016/j.neuron.2018.08.039. Epub 2018 Sep 27.
8
Connectivity Fingerprints: From Areal Descriptions to Abstract Spaces.
Trends Cogn Sci. 2018 Nov;22(11):1026-1037. doi: 10.1016/j.tics.2018.08.009. Epub 2018 Sep 18.
9
Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans.
Neuron. 2018 Aug 22;99(4):640-663. doi: 10.1016/j.neuron.2018.07.002.
10
The impact of traditional neuroimaging methods on the spatial localization of cortical areas.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6356-E6365. doi: 10.1073/pnas.1801582115. Epub 2018 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验