Suppr超能文献

推动人类连接组计划中功能和扩散磁共振成像的空间和时间分辨率。

Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project.

机构信息

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.

出版信息

Neuroimage. 2013 Oct 15;80:80-104. doi: 10.1016/j.neuroimage.2013.05.012. Epub 2013 May 21.

Abstract

The Human Connectome Project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce 'functional connectivity'; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3T, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 s for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total dMRI data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 T magnetic field are also presented, targeting higher spatial resolution, enhanced specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields, and reduced power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure.

摘要

人类连接组计划(HCP)主要依赖于三种互补的磁共振(MR)方法。这些方法是:1)静息态功能磁共振成像(rfMRI),它利用 fMRI 时间序列中时间波动的相关性来推断“功能连接”;2)扩散成像(dMRI),为用于重建复杂轴突纤维结构的轨迹算法提供输入;3)基于任务的功能磁共振成像(tfMRI),用于识别人类大脑中的功能分区,以协助分析前两种方法获得的数据。我们描述了这些方法的技术改进和优化,以及影响 3T 下 fMRI 和 dMRI 图像采集速度的仪器选择,从而实现了全脑覆盖,fMRI 的各向同性分辨率为 2 毫米,用于轨迹分析的 dMRI 数据的各向同性分辨率为 1.25 毫米,总 dMRI 数据采集时间减少了三分之一。还介绍了在 7T 磁场下获取类似数据的正在进行的技术开发和优化,以实现更高的空间分辨率、增强功能成像信号的特异性、减轻不均匀射频(RF)场以及降低功率沉积。结果表明,总的来说,这些方法代表了人类大脑磁共振成像在研究大脑功能和结构方面的重大进展。

相似文献

1
Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:80-104. doi: 10.1016/j.neuroimage.2013.05.012. Epub 2013 May 21.
2
Resting-state fMRI in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:144-68. doi: 10.1016/j.neuroimage.2013.05.039. Epub 2013 May 20.
3
Pushing the limits of in vivo diffusion MRI for the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:220-33. doi: 10.1016/j.neuroimage.2013.05.078. Epub 2013 May 24.
4
The Lifespan Human Connectome Project in Aging: An overview.
Neuroimage. 2019 Jan 15;185:335-348. doi: 10.1016/j.neuroimage.2018.10.009. Epub 2018 Oct 15.
5
Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.
Neuroimage. 2020 Jul 15;215:116800. doi: 10.1016/j.neuroimage.2020.116800. Epub 2020 Apr 8.
6
Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
Neuroimage. 2017 Nov 1;161:251-260. doi: 10.1016/j.neuroimage.2017.08.055. Epub 2017 Aug 24.
8
The parcellation-based connectome: limitations and extensions.
Neuroimage. 2013 Oct 15;80:397-404. doi: 10.1016/j.neuroimage.2013.03.053. Epub 2013 Apr 1.
9
The minimal preprocessing pipelines for the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.

引用本文的文献

1
Stable cortical body maps before and after arm amputation.
Nat Neurosci. 2025 Aug 21. doi: 10.1038/s41593-025-02037-7.
2
Voxel-Wise or Region-Wise Nuisance Regression for Functional Connectivity Analyses: Does It Matter?
Hum Brain Mapp. 2025 Aug 15;46(12):e70323. doi: 10.1002/hbm.70323.
3
Weak and unstable prediction of personality from the structural connectome.
Imaging Neurosci (Camb). 2025 Jan 3;3. doi: 10.1162/imag_a_00416. eCollection 2025.
4
T contrast variation in human brain at 7 T and its potential contributors.
Imaging Neurosci (Camb). 2025 Jul 7;3. doi: 10.1162/IMAG.a.67. eCollection 2025.
5
Evidence for a compensatory relationship between left- and right-lateralized brain networks.
Imaging Neurosci (Camb). 2025 Jan 29;3. doi: 10.1162/imag_a_00437. eCollection 2025.
7
Methods for decoding cortical gradients of functional connectivity.
Imaging Neurosci (Camb). 2024 Feb 2;2. doi: 10.1162/imag_a_00081. eCollection 2024.
8
Network spreading and local biological vulnerability in amyotrophic lateral sclerosis.
Commun Biol. 2025 Aug 4;8(1):1153. doi: 10.1038/s42003-025-08561-3.
9
Quantification of retinotopic maps with a Gaussian process modeling.
J Vis. 2025 Jul 1;25(8):20. doi: 10.1167/jov.25.8.20.

本文引用的文献

1
Evaluation of highly accelerated simultaneous multi-slice EPI for fMRI.
Neuroimage. 2015 Jan 1;104:452-9. doi: 10.1016/j.neuroimage.2014.10.027. Epub 2014 Oct 18.
2
Estimation of the CSA-ODF using Bayesian compressed sensing of multi-shell HARDI.
Magn Reson Med. 2014 Nov;72(5):1471-85. doi: 10.1002/mrm.25046. Epub 2013 Dec 12.
3
Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds.
IEEE Trans Signal Process. 2010 Dec;58(12):6140-6155. doi: 10.1109/TSP.2010.2070796.
5
Advances in diffusion MRI acquisition and processing in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:125-43. doi: 10.1016/j.neuroimage.2013.05.057. Epub 2013 May 20.
6
Resting-state fMRI in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:144-68. doi: 10.1016/j.neuroimage.2013.05.039. Epub 2013 May 20.
7
The WU-Minn Human Connectome Project: an overview.
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
8
Function in the human connectome: task-fMRI and individual differences in behavior.
Neuroimage. 2013 Oct 15;80:169-89. doi: 10.1016/j.neuroimage.2013.05.033. Epub 2013 May 16.
9
The minimal preprocessing pipelines for the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.
10
Multiband accelerated spin-echo echo planar imaging with reduced peak RF power using time-shifted RF pulses.
Magn Reson Med. 2013 May;69(5):1261-7. doi: 10.1002/mrm.24719. Epub 2013 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验