Suppr超能文献

人类连接组中的功能:任务 fMRI 与行为的个体差异。

Function in the human connectome: task-fMRI and individual differences in behavior.

机构信息

Department of Psychology, Washington University, St. Louis, MO 63130, USA.

出版信息

Neuroimage. 2013 Oct 15;80:169-89. doi: 10.1016/j.neuroimage.2013.05.033. Epub 2013 May 16.

Abstract

The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of structural and functional connectivity in the healthy adult human brain. However, we know that there are important individual differences in such patterns of connectivity, with evidence that this variability is associated with alterations in important cognitive and behavioral variables that affect real world function. The HCP data will be a critical stepping-off point for future studies that will examine how variation in human structural and functional connectivity play a role in adult and pediatric neurological and psychiatric disorders that account for a huge amount of public health resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive and emotional processes that will delineate a core set of functions relevant to understanding the relationship between brain connectivity and human behavior. In addition, the HCP is using task-fMRI (tfMRI) to help delineate the relationships between individual differences in the neurobiological substrates of mental processing and both functional and structural connectivity, as well as to help characterize and validate the connectivity analyses to be conducted on the structural and functional connectivity data. This paper describes the logic and rationale behind the development of the behavioral, individual difference, and tfMRI batteries and provides preliminary data on the patterns of activation associated with each of the fMRI tasks, at both group and individual levels.

摘要

人类连接组计划(HCP)的主要目标是描绘健康成年人脑的结构和功能连接的典型模式。然而,我们知道这种连接模式存在重要的个体差异,有证据表明这种可变性与重要认知和行为变量的改变有关,这些变量会影响现实世界的功能。HCP 数据将是未来研究的重要起点,这些研究将检查人类结构和功能连接的变化如何在影响大量公共卫生资源的成人和儿科神经和精神疾病中发挥作用。因此,HCP 正在收集一系列运动、感觉、认知和情感过程的行为测量数据,这些数据将描绘出一套与理解大脑连接和人类行为之间关系相关的核心功能。此外,HCP 还使用任务功能磁共振成像(tfMRI)来帮助描绘心理处理的神经生物学基础的个体差异与功能和结构连接之间的关系,并帮助描述和验证对结构和功能连接数据进行的连接分析。本文描述了行为、个体差异和 tfMRI 电池开发的逻辑和基本原理,并提供了与每个 fMRI 任务相关的激活模式的初步数据,包括在群体和个体水平上的结果。

相似文献

1
Function in the human connectome: task-fMRI and individual differences in behavior.
Neuroimage. 2013 Oct 15;80:169-89. doi: 10.1016/j.neuroimage.2013.05.033. Epub 2013 May 16.
2
The Lifespan Human Connectome Project in Aging: An overview.
Neuroimage. 2019 Jan 15;185:335-348. doi: 10.1016/j.neuroimage.2018.10.009. Epub 2018 Oct 15.
4
Adding dynamics to the Human Connectome Project with MEG.
Neuroimage. 2013 Oct 15;80:190-201. doi: 10.1016/j.neuroimage.2013.05.056. Epub 2013 May 20.
5
Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets.
Neuroimage. 2017 Feb 15;147:243-252. doi: 10.1016/j.neuroimage.2016.11.073. Epub 2016 Dec 1.
6
The WU-Minn Human Connectome Project: an overview.
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
7
Resting-state fMRI in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:144-68. doi: 10.1016/j.neuroimage.2013.05.039. Epub 2013 May 20.
8
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
Magn Reson Imaging. 2016 Feb;34(2):209-18. doi: 10.1016/j.mri.2015.10.036. Epub 2015 Oct 31.
9
Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:80-104. doi: 10.1016/j.neuroimage.2013.05.012. Epub 2013 May 21.
10
Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
Neuroimage. 2017 Nov 1;161:251-260. doi: 10.1016/j.neuroimage.2017.08.055. Epub 2017 Aug 24.

引用本文的文献

1
Neurocognitive Biotypes of Risk and Resilience for Mood Disorders in Adolescents: Insights From Behavioral and Graph-Theoretic Network Markers.
Biol Psychiatry Glob Open Sci. 2025 Jul 8;5(6):100563. doi: 10.1016/j.bpsgos.2025.100563. eCollection 2025 Nov.
3
Individual differences shape conceptual representation in the brain.
bioRxiv. 2025 Aug 22:2025.08.22.671848. doi: 10.1101/2025.08.22.671848.
4
A Principled Framework to Assess the Information-Theoretic Fitness of Brain Functional Sub-Circuits.
Mathematics (Basel). 2024 Oct;12(19). doi: 10.3390/math12192967. Epub 2024 Sep 24.
5
Homological landscape of human brain functional sub-circuits.
Mathematics (Basel). 2024 Feb;12(3). doi: 10.3390/math12030455. Epub 2024 Jan 31.
7
Predicting task-related brain activity from resting-state brain dynamics with fMRI Transformer.
Imaging Neurosci (Camb). 2025 Jan 17;3. doi: 10.1162/imag_a_00440. eCollection 2025.
8
Temporal variability of brain-behavior relationships in fine-scale dynamics of edge time series.
Imaging Neurosci (Camb). 2025 Jan 23;3. doi: 10.1162/imag_a_00443. eCollection 2025.
9
Functional organization of the human corpus callosum unveiled with BOLD-fMRI gradients.
Imaging Neurosci (Camb). 2024 Mar 25;2. doi: 10.1162/imag_a_00115. eCollection 2024.
10
Spatial-extent inference for testing variance components in reliability and heritability studies.
Imaging Neurosci (Camb). 2024 Jan 9;2. doi: 10.1162/imag_a_00058. eCollection 2024.

本文引用的文献

1
Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points.
Hum Brain Mapp. 2014 May;35(5):1981-96. doi: 10.1002/hbm.22307. Epub 2013 Jul 17.
2
Human Connectome Project informatics: quality control, database services, and data visualization.
Neuroimage. 2013 Oct 15;80:202-19. doi: 10.1016/j.neuroimage.2013.05.077. Epub 2013 May 24.
3
Adding dynamics to the Human Connectome Project with MEG.
Neuroimage. 2013 Oct 15;80:190-201. doi: 10.1016/j.neuroimage.2013.05.056. Epub 2013 May 20.
4
The WU-Minn Human Connectome Project: an overview.
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
5
The minimal preprocessing pipelines for the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.
6
Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex.
Cereb Cortex. 2014 Sep;24(9):2258-67. doi: 10.1093/cercor/bht064. Epub 2013 Apr 3.
8
Review of functional and anatomical brain connectivity findings in schizophrenia.
Curr Opin Psychiatry. 2013 Mar;26(2):172-87. doi: 10.1097/YCO.0b013e32835d9e6a.
9
Rich club organization of macaque cerebral cortex and its role in network communication.
PLoS One. 2012;7(9):e46497. doi: 10.1371/journal.pone.0046497. Epub 2012 Sep 28.
10
The development of hub architecture in the human functional brain network.
Cereb Cortex. 2013 Oct;23(10):2380-93. doi: 10.1093/cercor/bhs227. Epub 2012 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验