Suppr超能文献

II类羊毛硫肽合成酶HalM2对底物的识别

Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2.

作者信息

Rahman Imran R, Acedo Jeella Z, Liu Xiaoran Roger, Zhu Lingyang, Arrington Justine, Gross Michael L, van der Donk Wilfred A

机构信息

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

ACS Chem Biol. 2020 Jun 19;15(6):1473-1486. doi: 10.1021/acschembio.0c00127. Epub 2020 Apr 28.

Abstract

Class II lanthipeptides belong to a diverse group of natural products known as ribosomally synthesized and post-translationally modified peptides (RiPPs). Most RiPP precursor peptides contain an N-terminal recognition sequence known as the leader peptide, which is typically recognized by biosynthetic enzymes that catalyze modifications on the C-terminal core peptide. For class II lanthipeptides, these are carried out by a bifunctional lanthipeptide synthetase (LanM) that catalyzes dehydration and cyclization reactions on peptidic substrates to generate thioether-containing, macrocyclic molecules. Some lanthipeptide synthetases are extraordinarily substrate tolerant, making them promising candidates for biotechnological applications such as combinatorial biosynthesis and cyclic peptide library construction. In this study, we characterized the mode of leader peptide recognition by HalM2, the lanthipeptide synthetase responsible for the production of the antimicrobial peptide haloduracin β. Using NMR spectroscopic techniques, binding assays, and enzyme activity assays, we identified substrate residues that are important for binding to HalM2 and for post-translational modification of the peptide substrates. Additionally, we provide evidence of the binding site on the enzyme using binding assays with truncated enzyme variants, hydrogen-deuterium exchange mass spectrometry, and photoaffinity labeling. Understanding the mechanism by which lanthipeptide synthetases recognize their substrate will facilitate their use in biotechnology, as well as further our general understanding of how RiPP enzymes recognize their substrates.

摘要

II类羊毛硫肽属于一类多样的天然产物,称为核糖体合成及翻译后修饰肽(RiPPs)。大多数RiPP前体肽含有一个称为前导肽的N端识别序列,该序列通常被生物合成酶识别,这些酶催化C端核心肽上的修饰。对于II类羊毛硫肽,这些修饰由双功能羊毛硫肽合成酶(LanM)进行,该酶催化肽底物上的脱水和环化反应,以生成含硫醚的大环分子。一些羊毛硫肽合成酶具有极高的底物耐受性,使其成为组合生物合成和环肽库构建等生物技术应用的有前景的候选者。在本研究中,我们表征了负责抗菌肽嗜盐碱菌素β产生的羊毛硫肽合成酶HalM2识别前导肽的模式。使用核磁共振光谱技术、结合测定和酶活性测定,我们鉴定了对于与HalM2结合以及肽底物的翻译后修饰重要的底物残基。此外,我们使用截短的酶变体结合测定、氢-氘交换质谱和光亲和标记提供了酶上结合位点的证据。了解羊毛硫肽合成酶识别其底物的机制将促进其在生物技术中的应用,并进一步加深我们对RiPP酶如何识别其底物的总体理解。

相似文献

1
Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2.
ACS Chem Biol. 2020 Jun 19;15(6):1473-1486. doi: 10.1021/acschembio.0c00127. Epub 2020 Apr 28.
2
3
Insights into the Dynamic Structural Properties of a Lanthipeptide Synthetase using Hydrogen-Deuterium Exchange Mass Spectrometry.
J Am Chem Soc. 2019 Sep 18;141(37):14661-14672. doi: 10.1021/jacs.9b06020. Epub 2019 Sep 6.
4
Partially Modified Peptide Intermediates in Lanthipeptide Biosynthesis Alter the Structure and Dynamics of a Lanthipeptide Synthetase.
J Am Chem Soc. 2022 Jun 15;144(23):10230-10240. doi: 10.1021/jacs.2c00727. Epub 2022 Jun 1.
6
Exploring the Conformational Landscape of a Lanthipeptide Synthetase Using Native Mass Spectrometry.
Biochemistry. 2021 May 18;60(19):1506-1519. doi: 10.1021/acs.biochem.1c00085. Epub 2021 Apr 22.
7
Synergistic binding of the leader and core peptides by the lantibiotic synthetase HalM2.
ACS Chem Biol. 2015 Apr 17;10(4):970-7. doi: 10.1021/cb5009876. Epub 2015 Feb 4.
8
Identification of the Catalytic Residues in the Cyclase Domain of the Class IV Lanthipeptide Synthetase SgbL.
Chembiochem. 2021 Nov 16;22(22):3169-3172. doi: 10.1002/cbic.202100391. Epub 2021 Sep 12.
10
Kinetic Analysis of Lanthipeptide Cyclization by Substrate-Tolerant ProcM.
bioRxiv. 2024 May 17:2024.05.16.594612. doi: 10.1101/2024.05.16.594612.

引用本文的文献

1
Promiscuity of lanthipeptide enzymes: new challenges and applications.
World J Microbiol Biotechnol. 2025 Aug 6;41(8):298. doi: 10.1007/s11274-025-04505-5.
2
De novo design of ribosomally synthesized and post-translationally modified peptides.
Nat Chem. 2025 Feb;17(2):233-245. doi: 10.1038/s41557-024-01685-9. Epub 2025 Jan 7.
3
Comparative genomics of the highly halophilic Haloferacaceae.
Sci Rep. 2024 Nov 6;14(1):27025. doi: 10.1038/s41598-024-78438-8.
5
A peptide dehydratase with core strength.
Nat Chem Biol. 2024 May;20(5):546-548. doi: 10.1038/s41589-024-01605-5.
8
The untapped potential of actinobacterial lanthipeptides as therapeutic agents.
Mol Biol Rep. 2023 Dec;50(12):10605-10616. doi: 10.1007/s11033-023-08880-w. Epub 2023 Nov 7.
9
The structure of MadC from reveals new insights into class I lanthipeptide cyclases.
Front Microbiol. 2023 Jan 18;13:1057217. doi: 10.3389/fmicb.2022.1057217. eCollection 2022.
10
Emulating nonribosomal peptides with ribosomal biosynthetic strategies.
RSC Chem Biol. 2022 Dec 6;4(1):7-36. doi: 10.1039/d2cb00169a. eCollection 2023 Jan 4.

本文引用的文献

1
Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease.
Nature. 2019 Nov;575(7783):505-511. doi: 10.1038/s41586-019-1742-x. Epub 2019 Nov 13.
2
Insights into the Dynamic Structural Properties of a Lanthipeptide Synthetase using Hydrogen-Deuterium Exchange Mass Spectrometry.
J Am Chem Soc. 2019 Sep 18;141(37):14661-14672. doi: 10.1021/jacs.9b06020. Epub 2019 Sep 6.
3
Characterization of glutamyl-tRNA-dependent dehydratases using nonreactive substrate mimics.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17245-17250. doi: 10.1073/pnas.1905240116. Epub 2019 Aug 13.
4
Mechanistic Studies of the Kinase Domains of Class IV Lanthipeptide Synthetases.
ACS Chem Biol. 2019 Jul 19;14(7):1583-1592. doi: 10.1021/acschembio.9b00323. Epub 2019 Jun 24.
5
Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale.
Nat Chem Biol. 2019 May;15(5):437-443. doi: 10.1038/s41589-019-0250-5. Epub 2019 Apr 1.
6
Flexizyme-Enabled Benchtop Biosynthesis of Thiopeptides.
J Am Chem Soc. 2019 Jan 16;141(2):758-762. doi: 10.1021/jacs.8b11521. Epub 2019 Jan 8.
7
Development and Application of Yeast and Phage Display of Diverse Lanthipeptides.
ACS Cent Sci. 2018 Apr 25;4(4):458-467. doi: 10.1021/acscentsci.7b00581. Epub 2018 Mar 28.
8
Investigation of Substrate Recognition and Biosynthesis in Class IV Lanthipeptide Systems.
J Am Chem Soc. 2018 May 2;140(17):5743-5754. doi: 10.1021/jacs.8b01323. Epub 2018 Apr 19.
9
A lanthipeptide library used to identify a protein-protein interaction inhibitor.
Nat Chem Biol. 2018 Apr;14(4):375-380. doi: 10.1038/s41589-018-0008-5. Epub 2018 Mar 5.
10
Incorporation of Nonproteinogenic Amino Acids in Class I and II Lantibiotics.
ACS Chem Biol. 2018 Apr 20;13(4):951-957. doi: 10.1021/acschembio.7b01024. Epub 2018 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验