Suppr超能文献

纤维板层肝细胞癌异常增强子活性热点揭示候选致癌途径和治疗弱点。

Hotspots of Aberrant Enhancer Activity in Fibrolamellar Carcinoma Reveal Candidate Oncogenic Pathways and Therapeutic Vulnerabilities.

机构信息

Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.

Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.

出版信息

Cell Rep. 2020 Apr 14;31(2):107509. doi: 10.1016/j.celrep.2020.03.073.

Abstract

Fibrolamellar carcinoma (FLC) is a rare, therapeutically intractable liver cancer that disproportionately affects youth. Although FLC tumors exhibit a distinct gene expression profile, the chromatin regulatory landscape and the genes most critical for tumor cell survival remain unclear. Here, we use chromatin run-on sequencing to discover ∼7,000 enhancers and 141 enhancer hotspots activated in FLC relative to nonmalignant liver. Bioinformatic analyses reveal aberrant ERK/MEK signaling and candidate master transcriptional regulators. We also define the genes most strongly associated with hotspots of FLC enhancer activity, including CA12 and SLC16A14. Treatment of FLC cell models with inhibitors of CA12 or SLC16A14 independently reduce cell viability and/or significantly enhance the effect of the MEK inhibitor cobimetinib. These findings highlight molecular targets for drug development, as well as drug combination approaches.

摘要

纤维板层样肝细胞癌(FLC)是一种罕见的、难以治疗的肝癌,它不成比例地影响年轻人。尽管 FLC 肿瘤表现出独特的基因表达谱,但染色质调控景观和对肿瘤细胞存活最重要的基因仍不清楚。在这里,我们使用染色质运行测序来发现与非恶性肝脏相比,FLC 中约有 7000 个增强子和 141 个增强子热点被激活。生物信息学分析揭示了异常的 ERK/MEK 信号和候选主转录调节因子。我们还定义了与 FLC 增强子活性热点最密切相关的基因,包括 CA12 和 SLC16A14。用 CA12 或 SLC16A14 的抑制剂治疗 FLC 细胞模型可独立降低细胞活力,或显著增强 MEK 抑制剂 cobimetinib 的作用。这些发现突出了药物开发的分子靶点,以及药物联合治疗方法。

相似文献

2
BAP1 mutations define a homogeneous subgroup of hepatocellular carcinoma with fibrolamellar-like features and activated PKA.
J Hepatol. 2020 May;72(5):924-936. doi: 10.1016/j.jhep.2019.12.006. Epub 2019 Dec 18.
3
Unique genomic profile of fibrolamellar hepatocellular carcinoma.
Gastroenterology. 2015 Apr;148(4):806-18.e10. doi: 10.1053/j.gastro.2014.12.028. Epub 2014 Dec 31.
5
β-catenin cancer-enhancing genomic regions axis is involved in the development of fibrolamellar hepatocellular carcinoma.
Hepatol Commun. 2022 Oct;6(10):2950-2963. doi: 10.1002/hep4.2055. Epub 2022 Aug 24.
6
Methylome sequencing for fibrolamellar hepatocellular carcinoma depicts distinctive features.
Epigenetics. 2015;10(9):872-81. doi: 10.1080/15592294.2015.1076955.
9
Transcriptional dysregulation by aberrant enhancer activation and rewiring in cancer.
Cancer Sci. 2021 Jun;112(6):2081-2088. doi: 10.1111/cas.14884. Epub 2021 May 1.
10
Single-Cell RNA Sequencing Identifies Yes-Associated Protein 1-Dependent Hepatic Mesothelial Progenitors in Fibrolamellar Carcinoma.
Am J Pathol. 2020 Jan;190(1):93-107. doi: 10.1016/j.ajpath.2019.09.018. Epub 2019 Oct 24.

引用本文的文献

1
Machine learning tools for deciphering the regulatory logic of enhancers in health and disease.
Front Genet. 2025 Aug 13;16:1603687. doi: 10.3389/fgene.2025.1603687. eCollection 2025.
2
Mitochondrial calcium signaling regulates branched-chain amino acid catabolism in fibrolamellar carcinoma.
Sci Adv. 2025 May 30;11(22):eadu9512. doi: 10.1126/sciadv.adu9512. Epub 2025 May 28.
5
Protein kinase A and local signaling in cancer.
Biochem J. 2024 Nov 20;481(22):1659-1677. doi: 10.1042/BCJ20230352.
8
Evaluation of Protein Kinase cAMP-Activated Catalytic Subunit Alpha as a Therapeutic Target for Fibrolamellar Carcinoma.
Gastro Hep Adv. 2022 Nov 8;2(3):307-321. doi: 10.1016/j.gastha.2022.11.004. eCollection 2023.
9
Distinct phases of cellular signaling revealed by time-resolved protein synthesis.
Nat Chem Biol. 2024 Oct;20(10):1353-1360. doi: 10.1038/s41589-024-01677-3. Epub 2024 Jul 8.
10
Mitochondrial Calcium Signaling Regulates Branched-Chain Amino Acid Catabolism in Fibrolamellar Carcinoma.
bioRxiv. 2024 Nov 30:2024.05.27.596106. doi: 10.1101/2024.05.27.596106.

本文引用的文献

2
MicroRNA-375 Suppresses the Growth and Invasion of Fibrolamellar Carcinoma.
Cell Mol Gastroenterol Hepatol. 2019;7(4):803-817. doi: 10.1016/j.jcmgh.2019.01.008. Epub 2019 Feb 11.
3
Identification of regulatory elements from nascent transcription using dREG.
Genome Res. 2019 Feb;29(2):293-303. doi: 10.1101/gr.238279.118. Epub 2018 Dec 20.
4
Upregulation of lncRNA LINC00473 promotes radioresistance of HNSCC cells through activating Wnt/β-catenin signaling pathway.
Eur Rev Med Pharmacol Sci. 2018 Nov;22(21):7305-7313. doi: 10.26355/eurrev_201811_16267.
5
SEdb: a comprehensive human super-enhancer database.
Nucleic Acids Res. 2019 Jan 8;47(D1):D235-D243. doi: 10.1093/nar/gky1025.
6
The chromatin accessibility landscape of primary human cancers.
Science. 2018 Oct 26;362(6413). doi: 10.1126/science.aav1898.
7
Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme.
Nat Genet. 2018 Nov;50(11):1553-1564. doi: 10.1038/s41588-018-0244-3. Epub 2018 Oct 22.
8
LINC00473 promotes the Taxol resistance via miR-15a in colorectal cancer.
Biosci Rep. 2018 Sep 20;38(5). doi: 10.1042/BSR20180790. Print 2018 Oct 31.
10
Massive mining of publicly available RNA-seq data from human and mouse.
Nat Commun. 2018 Apr 10;9(1):1366. doi: 10.1038/s41467-018-03751-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验