Suppr超能文献

来自一名单基因糖尿病患者的基因编辑人类干细胞衍生的β细胞逆转了小鼠先前存在的糖尿病。

Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice.

作者信息

Maxwell Kristina G, Augsornworawat Punn, Velazco-Cruz Leonardo, Kim Michelle H, Asada Rie, Hogrebe Nathaniel J, Morikawa Shuntaro, Urano Fumihiko, Millman Jeffrey R

机构信息

Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.

Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA.

出版信息

Sci Transl Med. 2020 Apr 22;12(540). doi: 10.1126/scitranslmed.aax9106.

Abstract

Differentiation of insulin-producing pancreatic β cells from induced pluripotent stem cells (iPSCs) derived from patients with diabetes promises to provide autologous cells for diabetes cell replacement therapy. However, current approaches produce patient iPSC-derived β (SC-β) cells with poor function in vitro and in vivo. Here, we used CRISPR-Cas9 to correct a diabetes-causing pathogenic variant in Wolfram syndrome 1 () in iPSCs derived from a patient with Wolfram syndrome (WS). After differentiation to β cells with our recent six-stage differentiation strategy, corrected WS SC-β cells performed robust dynamic insulin secretion in vitro in response to glucose and reversed preexisting streptozocin-induced diabetes after transplantation into mice. Single-cell transcriptomics showed that corrected SC-β cells displayed increased insulin and decreased expression of genes associated with endoplasmic reticulum stress. CRISPR-Cas9 correction of a diabetes-inducing gene variant thus allows for robust differentiation of autologous SC-β cells that can reverse severe diabetes in an animal model.

摘要

从糖尿病患者来源的诱导多能干细胞(iPSC)中分化出产生胰岛素的胰腺β细胞,有望为糖尿病细胞替代疗法提供自体细胞。然而,目前的方法所产生的患者iPSC来源的β(SC-β)细胞在体外和体内功能都很差。在此,我们使用CRISPR-Cas9校正了一名患有沃夫勒姆综合征(WS)患者来源的iPSC中导致沃夫勒姆综合征1()的糖尿病致病变异。在用我们最近的六阶段分化策略将其分化为β细胞后,校正后的WS SC-β细胞在体外对葡萄糖刺激表现出强劲的动态胰岛素分泌,并在移植到小鼠体内后逆转了先前存在的链脲佐菌素诱导的糖尿病。单细胞转录组学显示,校正后的SC-β细胞胰岛素表达增加,与内质网应激相关的基因表达降低。因此,对糖尿病诱导基因变异进行CRISPR-Cas9校正能够实现自体SC-β细胞的强劲分化,这些细胞能够在动物模型中逆转严重糖尿病。

相似文献

3
β Cell Replacement after Gene Editing of a Neonatal Diabetes-Causing Mutation at the Insulin Locus.
Stem Cell Reports. 2018 Dec 11;11(6):1407-1415. doi: 10.1016/j.stemcr.2018.11.006. Epub 2018 Nov 29.
4
Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells.
Diabetologia. 2011 Sep;54(9):2325-36. doi: 10.1007/s00125-011-2246-x. Epub 2011 Jul 14.
8
β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome.
Diabetes. 2014 Mar;63(3):923-33. doi: 10.2337/db13-0717. Epub 2013 Nov 13.

引用本文的文献

1
The Interface of Gene Editing with Regenerative Medicine.
Engineering (Beijing). 2025 Mar;46:73-100. doi: 10.1016/j.eng.2024.10.019. Epub 2024 Nov 30.
3
Global research dynamics in the induced pluripotent stem cell and diabetes: A bibliometric analysis of the past twenty years.
Regen Ther. 2025 Jul 5;30:341-350. doi: 10.1016/j.reth.2025.06.015. eCollection 2025 Dec.
4
Characterization of Novel WFS1 Variants in Three Diabetes Pedigrees.
J Diabetes. 2025 Jul;17(7):e70114. doi: 10.1111/1753-0407.70114.
5
Stem cell therapies for diabetes.
Nat Med. 2025 Jun 27. doi: 10.1038/s41591-025-03767-8.
6
Type 2 diabetes mellitus - conventional therapies and future perspectives in innovative treatment.
Biochem Biophys Rep. 2025 May 2;42:102037. doi: 10.1016/j.bbrep.2025.102037. eCollection 2025 Jun.
10
Cell reprogramming: methods, mechanisms and applications.
Cell Regen. 2025 Mar 27;14(1):12. doi: 10.1186/s13619-025-00229-x.

本文引用的文献

1
Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells.
Nat Biotechnol. 2020 Apr;38(4):460-470. doi: 10.1038/s41587-020-0430-6. Epub 2020 Feb 24.
3
A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells.
Acta Biomater. 2019 Oct 1;97:272-280. doi: 10.1016/j.actbio.2019.08.031. Epub 2019 Aug 22.
4
Current Landscape of Treatments for Wolfram Syndrome.
Trends Pharmacol Sci. 2019 Oct;40(10):711-714. doi: 10.1016/j.tips.2019.07.011. Epub 2019 Aug 13.
6
Point mutations in the PDX1 transactivation domain impair human β-cell development and function.
Mol Metab. 2019 Jun;24:80-97. doi: 10.1016/j.molmet.2019.03.006. Epub 2019 Mar 20.
7
Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells.
Nat Cell Biol. 2019 Feb;21(2):263-274. doi: 10.1038/s41556-018-0271-4. Epub 2019 Feb 1.
9
Acquisition of Dynamic Function in Human Stem Cell-Derived β Cells.
Stem Cell Reports. 2019 Feb 12;12(2):351-365. doi: 10.1016/j.stemcr.2018.12.012. Epub 2019 Jan 17.
10
β Cell Replacement after Gene Editing of a Neonatal Diabetes-Causing Mutation at the Insulin Locus.
Stem Cell Reports. 2018 Dec 11;11(6):1407-1415. doi: 10.1016/j.stemcr.2018.11.006. Epub 2018 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验