Suppr超能文献

利用酶激活荧光探针无创光学检测自然杀伤细胞中的 granzyme B。

Noninvasive optical detection of granzyme B from natural killer cells with enzyme-activated fluorogenic probes.

机构信息

Wroclaw University of Science and Technology, Department of Chemical Biology and Bioimaging, Wroclaw, Poland.

Monash University, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Clayton, VIC, Australia.

出版信息

J Biol Chem. 2020 Jul 10;295(28):9567-9582. doi: 10.1074/jbc.RA120.013204. Epub 2020 May 21.

Abstract

Natural killer (NK) cells are key innate immunity effectors that combat viral infections and control several cancer types. For their immune function, human NK cells rely largely on five different cytotoxic proteases, called granzymes (A/B/H/K/M). Granzyme B (GrB) initiates at least three distinct cell death pathways, but key aspects of its function remain unexplored because selective probes that detect its activity are currently lacking. In this study, we used a set of unnatural amino acids to fully map the substrate preferences of GrB, demonstrating previously unknown GrB substrate preferences. We then used these preferences to design substrate-based inhibitors and a GrB-activatable activity-based fluorogenic probe. We show that our GrB probes do not significantly react with caspases, making them ideal for in-depth analyses of GrB localization and function in cells. Using our quenched fluorescence substrate, we observed GrB within the cytotoxic granules of human YT cells. When used as cytotoxic effectors, YT cells loaded with GrB attacked MDA-MB-231 target cells, and active GrB influenced its target cell-killing efficiency. In summary, we have developed a set of molecular tools for investigating GrB function in NK cells and demonstrate noninvasive visual detection of GrB with an enzyme-activated fluorescent substrate.

摘要

自然杀伤 (NK) 细胞是抗击病毒感染和控制多种癌症类型的关键先天免疫效应细胞。为了发挥其免疫功能,人类 NK 细胞在很大程度上依赖于五种不同的细胞毒性蛋白酶,称为颗粒酶 (A/B/H/K/M)。颗粒酶 B (GrB) 至少启动了三种不同的细胞死亡途径,但由于目前缺乏选择性探针来检测其活性,其功能的关键方面仍未得到探索。在这项研究中,我们使用了一组非天然氨基酸来全面绘制 GrB 的底物偏好图,展示了之前未知的 GrB 底物偏好。然后,我们使用这些偏好设计了基于底物的抑制剂和 GrB 激活的活性荧光探针。我们表明,我们的 GrB 探针与半胱天冬酶没有明显反应,这使它们成为深入分析 GrB 在细胞中的定位和功能的理想探针。使用我们的猝灭荧光底物,我们观察到 GrB 存在于人 YT 细胞的细胞毒性颗粒中。当用作细胞毒性效应细胞时,装载 GrB 的 YT 细胞攻击 MDA-MB-231 靶细胞,并且活性 GrB 影响其靶细胞杀伤效率。总之,我们开发了一组用于研究 NK 细胞中 GrB 功能的分子工具,并展示了用酶激活的荧光底物进行非侵入性可视化检测 GrB。

相似文献

1
Noninvasive optical detection of granzyme B from natural killer cells with enzyme-activated fluorogenic probes.
J Biol Chem. 2020 Jul 10;295(28):9567-9582. doi: 10.1074/jbc.RA120.013204. Epub 2020 May 21.
4
A Functional Chemiluminescent Probe for in Vivo Imaging of Natural Killer Cell Activity Against Tumours.
Angew Chem Int Ed Engl. 2021 Mar 8;60(11):5699-5703. doi: 10.1002/anie.202011429. Epub 2021 Feb 2.
5
6
The granzyme B-Serpinb9 axis controls the fate of lymphocytes after lysosomal stress.
Cell Death Differ. 2014 Jun;21(6):876-87. doi: 10.1038/cdd.2014.7. Epub 2014 Jan 31.
7
A novel Granzyme B nanoparticle delivery system simulates immune cell functions for suppression of solid tumors.
Theranostics. 2019 Oct 14;9(25):7616-7627. doi: 10.7150/thno.35900. eCollection 2019.
8
Effect of carbamate pesticides on perforin, granzymes A-B-3/K, and granulysin in human natural killer cells.
Int J Immunopathol Pharmacol. 2015 Sep;28(3):403-10. doi: 10.1177/0394632015582334. Epub 2015 Apr 28.
9
DDVP markedly decreases the expression of granzyme B and granzyme 3/K in human NK cells.
Toxicology. 2008 Jan 20;243(3):294-302. doi: 10.1016/j.tox.2007.10.018. Epub 2007 Oct 26.
10
Detection of human and mouse granzyme B activity in cell extracts.
Methods Mol Biol. 2012;844:251-60. doi: 10.1007/978-1-61779-527-5_18.

引用本文的文献

1
Protocol for assessing immune-target cell interactions using a single-cell cytotoxicity assay.
STAR Protoc. 2025 Mar 21;6(1):103558. doi: 10.1016/j.xpro.2024.103558. Epub 2025 Jan 10.
2
Fluorogenic Granzyme A Substrates Enable Real-Time Imaging of Adaptive Immune Cell Activity.
Angew Chem Weinheim Bergstr Ger. 2023 Feb 13;135(8):e202216142. doi: 10.1002/ange.202216142. Epub 2023 Jan 16.
3
A Functional Chemiluminescent Probe for in Vivo Imaging of Natural Killer Cell Activity Against Tumours.
Angew Chem Weinheim Bergstr Ger. 2021 Mar 8;133(11):5763-5767. doi: 10.1002/ange.202011429. Epub 2021 Feb 2.
4
Non-Canonical Amino Acids in Analyses of Protease Structure and Function.
Int J Mol Sci. 2023 Sep 13;24(18):14035. doi: 10.3390/ijms241814035.
5
A Genetically Encoded Dark-to-Bright Biosensor for Visualisation of Granzyme-Mediated Cytotoxicity.
Int J Mol Sci. 2023 Sep 2;24(17):13589. doi: 10.3390/ijms241713589.
6
Chemical Tools to Image the Activity of PAR-Cleaving Proteases.
ACS Bio Med Chem Au. 2023 May 27;3(4):295-304. doi: 10.1021/acsbiomedchemau.3c00019. eCollection 2023 Aug 16.
8
Smart probes for optical imaging of T cells and screening of anti-cancer immunotherapies.
Chem Soc Rev. 2023 Aug 14;52(16):5352-5372. doi: 10.1039/d2cs00928e.
9
Fluorescent Activity-Based Probe To Image and Inhibit Factor XIa Activity in Human Plasma.
J Med Chem. 2023 Mar 23;66(6):3785-3797. doi: 10.1021/acs.jmedchem.2c00845. Epub 2023 Mar 10.
10
Fluorogenic Granzyme A Substrates Enable Real-Time Imaging of Adaptive Immune Cell Activity.
Angew Chem Int Ed Engl. 2023 Feb 13;62(8):e202216142. doi: 10.1002/anie.202216142. Epub 2023 Jan 16.

本文引用的文献

1
Potent and selective caspase-2 inhibitor prevents MDM-2 cleavage in reversine-treated colon cancer cells.
Cell Death Differ. 2019 Dec;26(12):2695-2709. doi: 10.1038/s41418-019-0329-2. Epub 2019 Apr 11.
2
Selective Substrates and Activity-Based Probes for Imaging of the Human Constitutive 20S Proteasome in Cells and Blood Samples.
J Med Chem. 2018 Jun 28;61(12):5222-5234. doi: 10.1021/acs.jmedchem.8b00026. Epub 2018 Jun 9.
3
Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity.
Nat Protoc. 2017 Oct;12(10):2189-2214. doi: 10.1038/nprot.2017.091. Epub 2017 Sep 21.
4
Toolbox of Fluorescent Probes for Parallel Imaging Reveals Uneven Location of Serine Proteases in Neutrophils.
J Am Chem Soc. 2017 Jul 26;139(29):10115-10125. doi: 10.1021/jacs.7b04394. Epub 2017 Jul 18.
5
Human 20S proteasome activity towards fluorogenic peptides of various chain lengths.
Biol Chem. 2016 Sep 1;397(9):921-6. doi: 10.1515/hsz-2016-0176.
6
Small Molecule Active Site Directed Tools for Studying Human Caspases.
Chem Rev. 2015 Nov 25;115(22):12546-629. doi: 10.1021/acs.chemrev.5b00434. Epub 2015 Nov 9.
7
Perforin and granzymes: function, dysfunction and human pathology.
Nat Rev Immunol. 2015 Jun;15(6):388-400. doi: 10.1038/nri3839.
8
Unnatural amino acids increase sensitivity and provide for the design of highly selective caspase substrates.
Cell Death Differ. 2014 Sep;21(9):1482-92. doi: 10.1038/cdd.2014.64. Epub 2014 May 16.
9
Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2518-23. doi: 10.1073/pnas.1318548111. Epub 2014 Feb 3.
10
The granzyme B-Serpinb9 axis controls the fate of lymphocytes after lysosomal stress.
Cell Death Differ. 2014 Jun;21(6):876-87. doi: 10.1038/cdd.2014.7. Epub 2014 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验