Suppr超能文献

疾病使塔斯马尼亚恶魔(Sarcophilus harrisii)种群中遗传-环境关联的分子特征与非生物因素混淆。

Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations.

机构信息

School of Biological Sciences, Washington State University, Pullman, Washington, 99164.

Plant Biology, University of Minnesota, Minneapolis, Minnesota, 55455.

出版信息

Evolution. 2020 Jul;74(7):1392-1408. doi: 10.1111/evo.14023. Epub 2020 Jun 3.

Abstract

Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species' extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.

摘要

景观基因组学研究侧重于通过非生物环境变量的空间变化来识别选择下的候选基因,但很少涉及生物因素(即疾病)。袋獾(Sarcophilus harrisii)仅分布在环境异质性很强的塔斯马尼亚岛上,目前正受到一种传染性癌症——袋獾面部肿瘤病(DFTD)的威胁。尽管传染病模型预测该物种将会灭绝,但袋獾在长期感染的地区仍然存在,这表明它们可能已经适应了 DFTD。在这里,我们检验了空间变异和遗传多样性与非生物环境(即气候变量、海拔、植被覆盖)和/或 DFTD 的关联程度。我们使用来自 3287 个个体的 6886 个 SNP 进行遗传环境关联分析,这些个体在疾病出现前后在袋獾的地理范围内进行了采样。在疾病出现之前,我们发现等位基因频率与环境变量之间存在显著的相关性,包括 365 个与 71 个基因相关的独特位点,这表明了对非生物环境的局部适应。在疾病出现之前检测到的大多数候选位点在疾病出现后都没有被检测到。一些疾病出现后的候选位点与疾病流行率相关,并且与参与肿瘤抑制和免疫反应的基因处于连锁不平衡状态。疾病出现后,非生物局部适应的明显信号丢失表明,由于 DFTD 的迅速发生,强烈的选择导致了这种信号的淹没。

相似文献

2
Cancer- and behavior-related genes are targeted by selection in the Tasmanian devil (Sarcophilus harrisii).
PLoS One. 2018 Aug 13;13(8):e0201838. doi: 10.1371/journal.pone.0201838. eCollection 2018.
3
Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian devil.
Conserv Biol. 2014 Feb;28(1):63-75. doi: 10.1111/cobi.12152. Epub 2013 Sep 11.
4
Intergenomic signatures of coevolution between Tasmanian devils and an infectious cancer.
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2307780121. doi: 10.1073/pnas.2307780121. Epub 2024 Mar 11.
5
Devil Facial Tumor Disease.
Vet Pathol. 2016 Jul;53(4):726-36. doi: 10.1177/0300985815616444. Epub 2015 Dec 13.
8
Season, weight, and age, but not transmissible cancer, affect tick loads in the endangered Tasmanian devil.
Infect Genet Evol. 2022 Mar;98:105221. doi: 10.1016/j.meegid.2022.105221. Epub 2022 Jan 20.
10

引用本文的文献

1
Life-history trade-offs and reproductive strategies in Tasmanian devils following disease-induced population decline.
Proc Biol Sci. 2025 May;292(2047):20250697. doi: 10.1098/rspb.2025.0697. Epub 2025 May 21.
2
Adaptive potential in the face of a transmissible cancer in Tasmanian devils.
Mol Ecol. 2024 Nov;33(21):e17531. doi: 10.1111/mec.17531. Epub 2024 Sep 28.
4
Disease-driven top predator decline affects mesopredator population genomic structure.
Nat Ecol Evol. 2024 Feb;8(2):293-303. doi: 10.1038/s41559-023-02265-9. Epub 2024 Jan 8.
6
Understanding the evolution of immune genes in jawed vertebrates.
J Evol Biol. 2023 Jun;36(6):847-873. doi: 10.1111/jeb.14181. Epub 2023 May 31.
7
Transmissible cancer and longitudinal telomere dynamics in Tasmanian devils (Sarcophilus harrisii).
Mol Ecol. 2022 Dec;31(24):6531-6540. doi: 10.1111/mec.16721. Epub 2022 Oct 18.
8
Restoring faith in conservation action: Maintaining wild genetic diversity through the Tasmanian devil insurance program.
iScience. 2022 May 26;25(7):104474. doi: 10.1016/j.isci.2022.104474. eCollection 2022 Jul 15.
9
Genomic associations with poxvirus across divergent island populations in Berthelot's pipit.
Mol Ecol. 2022 Jun;31(11):3154-3173. doi: 10.1111/mec.16461. Epub 2022 Apr 18.

本文引用的文献

2
Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer.
Conserv Genet. 2019 Feb;20(1):81-87. doi: 10.1007/s10592-019-01157-5. Epub 2019 Feb 14.
5
Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics.
Evol Appl. 2018 Jul 28;11(10):1763-1778. doi: 10.1111/eva.12678. eCollection 2018 Dec.
6
The Genomic Basis of Tumor Regression in Tasmanian Devils (Sarcophilus harrisii).
Genome Biol Evol. 2018 Nov 1;10(11):3012-3025. doi: 10.1093/gbe/evy229.
7
Large-effect loci affect survival in Tasmanian devils (Sarcophilus harrisii) infected with a transmissible cancer.
Mol Ecol. 2018 Nov;27(21):4189-4199. doi: 10.1111/mec.14853. Epub 2018 Oct 5.
8
Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils.
J Appl Ecol. 2018 May;55(3):1368-1379. doi: 10.1111/1365-2664.13088. Epub 2018 Feb 5.
9
The devil is in the details: Genomics of transmissible cancers in Tasmanian devils.
PLoS Pathog. 2018 Aug 2;14(8):e1007098. doi: 10.1371/journal.ppat.1007098. eCollection 2018 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验