Suppr超能文献

非侵袭性检测门诊患者的局灶性癫痫发作。

Noninvasive detection of focal seizures in ambulatory patients.

机构信息

Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland.

Department of Clinical Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark.

出版信息

Epilepsia. 2020 Nov;61 Suppl 1(Suppl 1):S47-S54. doi: 10.1111/epi.16538. Epub 2020 Jun 2.

Abstract

Reliably detecting focal seizures without secondary generalization during daily life activities, chronically, using convenient portable or wearable devices, would offer patients with active epilepsy a number of potential benefits, such as providing more reliable seizure count to optimize treatment and seizure forecasting, and triggering alarms to promote safeguarding interventions. However, no generic solution is currently available to reach these objectives. A number of biosignals are sensitive to specific forms of focal seizures, in particular heart rate and its variability for seizures affecting the neurovegetative system, and accelerometry for those responsible for prominent motor activity. However, most studies demonstrate high rates of false detection or poor sensitivity, with only a minority of patients benefiting from acceptable levels of accuracy. To tackle this challenging issue, several lines of technological progress are envisioned, including multimodal biosensing with cross-modal analytics, a combination of embedded and distributed self-aware machine learning, and ultra-low-power design to enable appropriate autonomy of such sophisticated portable solutions.

摘要

在日常生活活动中,使用方便的便携式或可穿戴设备可靠地检测无继发性泛化的局灶性发作,将为活动性癫痫患者带来诸多潜在益处,例如提供更可靠的发作次数以优化治疗和发作预测,并触发警报以促进保护干预。然而,目前尚无通用解决方案可以实现这些目标。许多生物信号对特定形式的局灶性发作敏感,特别是对影响自主神经系统的发作的心率及其变异性,以及对导致明显运动活动的发作的加速度计敏感。然而,大多数研究表明,假阳性检测率或敏感性较差,只有少数患者受益于可接受的准确度水平。为了解决这个具有挑战性的问题,人们设想了几种技术进步路线,包括多模态生物传感与跨模态分析、嵌入式和分布式自感知机器学习的结合,以及超低功耗设计,以实现这种复杂的便携式解决方案的适当自主性。

相似文献

1
Noninvasive detection of focal seizures in ambulatory patients.
Epilepsia. 2020 Nov;61 Suppl 1(Suppl 1):S47-S54. doi: 10.1111/epi.16538. Epub 2020 Jun 2.
2
Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting.
Epilepsia. 2020 Dec;61(12):2653-2666. doi: 10.1111/epi.16719. Epub 2020 Oct 11.
3
Biomarkers of seizure severity derived from wearable devices.
Epilepsia. 2020 Nov;61 Suppl 1:S61-S66. doi: 10.1111/epi.16492. Epub 2020 Jun 10.
5
Ambulatory seizure detection.
Curr Opin Neurol. 2024 Apr 1;37(2):99-104. doi: 10.1097/WCO.0000000000001248. Epub 2024 Feb 7.
7
Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors.
Epilepsia. 2017 Nov;58(11):1870-1879. doi: 10.1111/epi.13899. Epub 2017 Oct 4.
8
Automated Detection of Convulsive Seizures Using a Wearable Accelerometer Device.
IEEE Trans Biomed Eng. 2019 Feb;66(2):421-432. doi: 10.1109/TBME.2018.2845865. Epub 2018 Jun 11.
9
Non-electroencephalogram-based seizure detection devices: State of the art and future perspectives.
Epilepsy Behav. 2023 Nov;148:109486. doi: 10.1016/j.yebeh.2023.109486. Epub 2023 Oct 17.
10
Personalized seizure detection using logistic regression machine learning based on wearable ECG-monitoring device.
Seizure. 2023 Apr;107:155-161. doi: 10.1016/j.seizure.2023.04.012. Epub 2023 Apr 13.

引用本文的文献

2
Seizure Detection Devices.
J Clin Med. 2025 Jan 28;14(3):863. doi: 10.3390/jcm14030863.
3
Using a standalone ear-EEG device for focal-onset seizure detection.
Bioelectron Med. 2024 Feb 7;10(1):4. doi: 10.1186/s42234-023-00135-0.
5
The Challenging Path to Developing a Mobile Health Device for Epilepsy: The Current Landscape and Where We Go From Here.
Front Neurol. 2021 Oct 1;12:740743. doi: 10.3389/fneur.2021.740743. eCollection 2021.
7
Atrioventricular Conduction in Mesial Temporal Lobe Seizures.
Front Neurol. 2021 Apr 28;12:661391. doi: 10.3389/fneur.2021.661391. eCollection 2021.

本文引用的文献

1
Seizure-related injury and postictal aggression in refractory epilepsy patients.
Epilepsy Res. 2020 Feb;160:106281. doi: 10.1016/j.eplepsyres.2020.106281. Epub 2020 Jan 20.
2
Clinical risk factors in SUDEP: A nationwide population-based case-control study.
Neurology. 2020 Jan 28;94(4):e419-e429. doi: 10.1212/WNL.0000000000008741. Epub 2019 Dec 12.
3
Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1338-1350. doi: 10.1109/TBCAS.2019.2951222. Epub 2019 Nov 4.
4
Seizure self-prediction in a randomized controlled trial of stress management.
Neurology. 2019 Nov 26;93(22):e2021-e2031. doi: 10.1212/WNL.0000000000008539. Epub 2019 Oct 23.
5
Seizure detection based on heart rate variability using a wearable electrocardiography device.
Epilepsia. 2019 Oct;60(10):2105-2113. doi: 10.1111/epi.16343. Epub 2019 Sep 20.
6
Online Learning and Classification of EMG-Based Gestures on a Parallel Ultra-Low Power Platform Using Hyperdimensional Computing.
IEEE Trans Biomed Circuits Syst. 2019 Jun;13(3):516-528. doi: 10.1109/TBCAS.2019.2914476. Epub 2019 May 2.
7
Ictal autonomic changes as a tool for seizure detection: a systematic review.
Clin Auton Res. 2019 Apr;29(2):161-181. doi: 10.1007/s10286-018-0568-1. Epub 2018 Oct 30.
8
Multimodal seizure detection: A review.
Epilepsia. 2018 Jun;59 Suppl 1:42-47. doi: 10.1111/epi.14047.
9
Detection of convulsive seizures using surface electromyography.
Epilepsia. 2018 Jun;59 Suppl 1:23-29. doi: 10.1111/epi.14048.
10
Seizure detection using scalp-EEG.
Epilepsia. 2018 Jun;59 Suppl 1:14-22. doi: 10.1111/epi.14052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验