Suppr超能文献

标题和摘要筛选的半自动化:一种利用 Abstrackr 的相关性预测进行系统和快速综述的回溯性探索方法。

The semi-automation of title and abstract screening: a retrospective exploration of ways to leverage Abstrackr's relevance predictions in systematic and rapid reviews.

机构信息

Alberta Research Centre for Health Evidence, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.

Alberta Strategy for Patient-Oriented Research (SPOR) SUPPORT Unit Knowledge Translation Platform, University of Alberta, Edmonton, Alberta, Canada.

出版信息

BMC Med Res Methodol. 2020 Jun 3;20(1):139. doi: 10.1186/s12874-020-01031-w.

Abstract

BACKGROUND

We investigated the feasibility of using a machine learning tool's relevance predictions to expedite title and abstract screening.

METHODS

We subjected 11 systematic reviews and six rapid reviews to four retrospective screening simulations (automated and semi-automated approaches to single-reviewer and dual independent screening) in Abstrackr, a freely-available machine learning software. We calculated the proportion missed, workload savings, and time savings compared to single-reviewer and dual independent screening by human reviewers. We performed cited reference searches to determine if missed studies would be identified via reference list scanning.

RESULTS

For systematic reviews, the semi-automated, dual independent screening approach provided the best balance of time savings (median (range) 20 (3-82) hours) and reliability (median (range) proportion missed records, 1 (0-14)%). The cited references search identified 59% (n = 10/17) of the records missed. For the rapid reviews, the fully and semi-automated approaches saved time (median (range) 9 (2-18) hours and 3 (1-10) hours, respectively), but less so than for the systematic reviews. The median (range) proportion missed records for both approaches was 6 (0-22)%.

CONCLUSION

Using Abstrackr to assist one of two reviewers in systematic reviews saves time with little risk of missing relevant records. Many missed records would be identified via other means.

摘要

背景

我们研究了使用机器学习工具的相关性预测来加快标题和摘要筛选的可行性。

方法

我们对 11 项系统评价和 6 项快速评价进行了四项回顾性筛选模拟(在 Abstrackr 中使用自动化和半自动化方法进行单 reviewer 和双独立 screening),Abstrackr 是一个免费的机器学习软件。我们计算了与单 reviewer 和双独立 screening 相比,人工 reviewer 错过的比例、工作量节省和时间节省。我们进行了被引参考文献搜索,以确定通过参考文献扫描是否可以识别出遗漏的研究。

结果

对于系统评价,半自动、双独立 screening 方法在节省时间(中位数(范围)20(3-82)小时)和可靠性(中位数(范围)错过记录的比例,1(0-14)%)方面提供了最佳平衡。被引参考文献搜索确定了 59%(n=10/17)遗漏的记录。对于快速评价,完全和半自动化方法节省了时间(中位数(范围)分别为 9(2-18)小时和 3(1-10)小时),但不如系统评价节省的多。两种方法的中位数(范围)错过记录的比例均为 6(0-22)%。

结论

在系统评价中使用 Abstrackr 协助两名 reviewer 中的一名可以节省时间,而不会有错过相关记录的风险。许多遗漏的记录将通过其他方式识别。

相似文献

4
Decoding semi-automated title-abstract screening: findings from a convenience sample of reviews.
Syst Rev. 2020 Nov 27;9(1):272. doi: 10.1186/s13643-020-01528-x.
6
8
A text-mining tool generated title-abstract screening workload savings: performance evaluation versus single-human screening.
J Clin Epidemiol. 2022 Sep;149:53-59. doi: 10.1016/j.jclinepi.2022.05.017. Epub 2022 May 30.
10
Assessing the accuracy of machine-assisted abstract screening with DistillerAI: a user study.
Syst Rev. 2019 Nov 15;8(1):277. doi: 10.1186/s13643-019-1221-3.

引用本文的文献

1
2
Machine learning for accelerating screening in evidence reviews.
Cochrane Evid Synth Methods. 2023 Jul 20;1(5):e12021. doi: 10.1002/cesm.12021. eCollection 2023 Jul.
4
Digital Tools to Support the Systematic Review Process: An Introduction.
J Eval Clin Pract. 2025 Apr;31(3):e70100. doi: 10.1111/jep.70100.
5
Artificial Intelligence as a New Research Ally? Performing AI-Assisted Systematic Literature Reviews in Health Economics.
Pharmacoeconomics. 2025 Jun;43(6):647-650. doi: 10.1007/s40273-025-01481-4. Epub 2025 Apr 10.
7
Semi-automated title-abstract screening using natural language processing and machine learning.
Syst Rev. 2024 Nov 1;13(1):274. doi: 10.1186/s13643-024-02688-w.

本文引用的文献

1
The Systematic Review Toolbox: keeping up to date with tools to support evidence synthesis.
Syst Rev. 2022 Dec 1;11(1):258. doi: 10.1186/s13643-022-02122-z.
3
Evaluation of text mining to reduce screening workload for injury-focused systematic reviews.
Inj Prev. 2020 Feb;26(1):55-60. doi: 10.1136/injuryprev-2019-043247. Epub 2019 Aug 26.
9
Fit for purpose: perspectives on rapid reviews from end-user interviews.
Syst Rev. 2017 Feb 17;6(1):32. doi: 10.1186/s13643-017-0425-7.
10
A scoping review of rapid review methods.
BMC Med. 2015 Sep 16;13:224. doi: 10.1186/s12916-015-0465-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验