Suppr超能文献

非酒精性脂肪性肝病肝纤维化的自动量化和结构模式检测。

Automated quantification and architectural pattern detection of hepatic fibrosis in NAFLD.

机构信息

Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States of America.

Department of Computer and Information Science, Indiana University Purdue University, Indianapolis, IN, United States of America.

出版信息

Ann Diagn Pathol. 2020 Aug;47:151518. doi: 10.1016/j.anndiagpath.2020.151518. Epub 2020 Apr 12.

Abstract

Accurate detection and quantification of hepatic fibrosis remain essential for assessing the severity of non-alcoholic fatty liver disease (NAFLD) and its response to therapy in clinical practice and research studies. Our aim was to develop an integrated artificial intelligence-based automated tool to detect and quantify hepatic fibrosis and assess its architectural pattern in NAFLD liver biopsies. Digital images of the trichrome-stained slides of liver biopsies from patients with NAFLD and different severity of fibrosis were used. Two expert liver pathologists semi-quantitatively assessed the severity of fibrosis in these biopsies and using a web applet provided a total of 987 annotations of different fibrosis types for developing, training and testing supervised machine learning models to detect fibrosis. The collagen proportionate area (CPA) was measured and correlated with each of the pathologists semi-quantitative fibrosis scores. Models were created and tested to detect each of six potential fibrosis patterns. There was good to excellent correlation between CPA and the pathologist score of fibrosis stage. The coefficient of determination (R) of automated CPA with the pathologist stages ranged from 0.60 to 0.86. There was considerable overlap in the calculated CPA across different fibrosis stages. For identification of fibrosis patterns, the models areas under the receiver operator curve were 78.6% for detection of periportal fibrosis, 83.3% for pericellular fibrosis, 86.4% for portal fibrosis and >90% for detection of normal fibrosis, bridging fibrosis, and presence of nodule/cirrhosis. In conclusion, an integrated automated tool could accurately quantify hepatic fibrosis and determine its architectural patterns in NAFLD liver biopsies.

摘要

准确检测和量化肝纤维化对于评估非酒精性脂肪性肝病 (NAFLD) 的严重程度及其在临床实践和研究中的治疗反应仍然至关重要。我们的目的是开发一种基于人工智能的综合自动化工具,以检测和量化肝纤维化,并评估其在 NAFLD 肝活检中的结构模式。使用了 NAFLD 患者和不同纤维化程度的肝活检三染切片的数字图像。两位专家肝脏病理学家对这些活检中的纤维化严重程度进行了半定量评估,并使用网络小程序共提供了 987 种不同纤维化类型的注释,用于开发、训练和测试监督机器学习模型以检测纤维化。测量了胶原比例面积 (CPA) 并与每位病理学家的半定量纤维化评分相关联。创建并测试了模型以检测六种潜在纤维化模式中的每一种。CPA 与病理学家纤维化分期评分之间存在良好到极好的相关性。自动 CPA 与病理学家分期的决定系数 (R) 范围为 0.60 至 0.86。不同纤维化分期的计算 CPA 之间存在相当大的重叠。对于纤维化模式的识别,模型的接收器操作曲线下面积分别为门脉周围纤维化的 78.6%、细胞周围纤维化的 83.3%、门脉纤维化的 86.4%,以及正常纤维化、桥接纤维化和结节/肝硬化存在的检测>90%。总之,综合自动化工具可以准确地量化 NAFLD 肝活检中的肝纤维化并确定其结构模式。

相似文献

1
Automated quantification and architectural pattern detection of hepatic fibrosis in NAFLD.
Ann Diagn Pathol. 2020 Aug;47:151518. doi: 10.1016/j.anndiagpath.2020.151518. Epub 2020 Apr 12.
4
Collagen proportionate area of liver tissue determined by digital image analysis in patients with HBV-related decompensated cirrhosis.
Hepatobiliary Pancreat Dis Int. 2011 Oct;10(5):497-501. doi: 10.1016/s1499-3872(11)60084-2.
5
Automatic quantification of lobular inflammation and hepatocyte ballooning in nonalcoholic fatty liver disease liver biopsies.
Hum Pathol. 2015 May;46(5):767-75. doi: 10.1016/j.humpath.2015.01.019. Epub 2015 Feb 19.
8
Standardising the interpretation of liver biopsies in non-alcoholic fatty liver disease clinical trials.
Aliment Pharmacol Ther. 2019 Nov;50(10):1100-1111. doi: 10.1111/apt.15503. Epub 2019 Oct 3.
9
Stage-dependent expression of fibrogenic markers in alcohol-related liver disease.
Pathol Res Pract. 2022 Mar;231:153798. doi: 10.1016/j.prp.2022.153798. Epub 2022 Feb 7.
10
Collagen proportionate area is an independent predictor of long-term outcome in patients with non-alcoholic fatty liver disease.
Aliment Pharmacol Ther. 2019 May;49(9):1214-1222. doi: 10.1111/apt.15219. Epub 2019 Mar 18.

引用本文的文献

1
Deep learning-based method for grading histopathological liver fibrosis in rodent models of metabolic dysfunction-associated steatohepatitis.
Front Med (Lausanne). 2025 Jul 4;12:1629036. doi: 10.3389/fmed.2025.1629036. eCollection 2025.
2
Effect of liver biopsy size on MASLD fibrosis assessment by second-harmonic generation/two-photon excitation fluorescence microscopy.
JHEP Rep. 2025 May 8;7(8):101449. doi: 10.1016/j.jhepr.2025.101449. eCollection 2025 Aug.
3
Assessing the diagnostic accuracy of ChatGPT-4 in the histopathological evaluation of liver fibrosis in MASH.
Hepatol Commun. 2025 Apr 30;9(5). doi: 10.1097/HC9.0000000000000695. eCollection 2025 May 1.
4
Revolutionizing MASLD: How Artificial Intelligence Is Shaping the Future of Liver Care.
Cancers (Basel). 2025 Feb 20;17(5):722. doi: 10.3390/cancers17050722.
5
Liver fibrosis classification on trichrome histology slides using weakly supervised learning in children and young adults.
J Pathol Inform. 2024 Dec 11;16:100416. doi: 10.1016/j.jpi.2024.100416. eCollection 2025 Jan.
7
Radiologic correlation with fatty liver and adrenal adenoma using dual echo chemical shift magnetic resonance imaging.
Abdom Radiol (NY). 2025 Apr;50(4):1868-1875. doi: 10.1007/s00261-024-04622-z. Epub 2024 Oct 12.
8
Artificial Intelligence and the Future of Gastroenterology and Hepatology.
Gastro Hep Adv. 2022 May 11;1(4):581-595. doi: 10.1016/j.gastha.2022.02.025. eCollection 2022.
9
Fibrosis severity scoring on Sirius red histology with multiple-instance deep learning.
Biol Imaging. 2023 Jul 18;3:e17. doi: 10.1017/S2633903X23000144. eCollection 2023.
10
The Use of Artificial Intelligence in the Liver Histopathology Field: A Systematic Review.
Diagnostics (Basel). 2024 Feb 10;14(4):388. doi: 10.3390/diagnostics14040388.

本文引用的文献

1
The Natural History of Advanced Fibrosis Due to Nonalcoholic Steatohepatitis: Data From the Simtuzumab Trials.
Hepatology. 2019 Dec;70(6):1913-1927. doi: 10.1002/hep.30664. Epub 2019 May 28.
2
Collagen proportionate area is an independent predictor of long-term outcome in patients with non-alcoholic fatty liver disease.
Aliment Pharmacol Ther. 2019 May;49(9):1214-1222. doi: 10.1111/apt.15219. Epub 2019 Mar 18.
6
Emerging Treatments for Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis.
Clin Liver Dis. 2018 Feb;22(1):189-199. doi: 10.1016/j.cld.2017.08.013. Epub 2017 Oct 10.
8
Histopathology, grading and staging of nonalcoholic fatty liver disease.
Minerva Gastroenterol Dietol. 2018 Mar;64(1):28-38. doi: 10.23736/S1121-421X.17.02445-X. Epub 2017 Sep 25.
10
Mechanisms of hepatic stellate cell activation.
Nat Rev Gastroenterol Hepatol. 2017 Jul;14(7):397-411. doi: 10.1038/nrgastro.2017.38. Epub 2017 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验