Suppr超能文献

利用人工智能和深度学习开发非酒精性脂肪性肝病纤维化诊断支持系统

Development of a diagnostic support system for the fibrosis of nonalcoholic fatty liver disease using artificial intelligence and deep learning.

作者信息

Preechathammawong Noppamate, Charoenpitakchai Mongkon, Wongsason Nutthawat, Karuehardsuwan Julalak, Prasoppokakorn Thaninee, Pitisuttithum Panyavee, Sanpavat Anapat, Yongsiriwit Karn, Aribarg Thannob, Chaisiriprasert Parkpoom, Treeprasertsuk Sombat, Chirapongsathorn Sakkarin

机构信息

Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand.

Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand.

出版信息

Kaohsiung J Med Sci. 2024 Aug;40(8):757-765. doi: 10.1002/kjm2.12850. Epub 2024 May 31.

Abstract

Liver fibrosis is a pathological condition characterized by the abnormal proliferation of liver tissue, subsequently able to progress to cirrhosis or possibly hepatocellular carcinoma. The development of artificial intelligence and deep learning have begun to play a significant role in fibrosis detection. This study aimed to develop SMART AI-PATHO, a fully automated assessment method combining quantification of histopathological architectural features, to analyze steatosis and fibrosis in nonalcoholic fatty liver disease (NAFLD) core biopsies and employ Metavir fibrosis staging as standard references and fat assessment grading measurement for comparison with the pathologist interpretations. There were 146 participants enrolled in our study. The correlation of Metavir scoring system interpretation between pathologists and SMART AI-PATHO was significantly correlated (Agreement = 68%, Kappa = 0.59, p-value <0.001), which subgroup analysis of significant fibrosis (Metavir score F2-F4) and nonsignificant fibrosis (Metavir score F0-F1) demonstrated substantial correlated results (agreement = 80%, kappa = 0.61, p-value <0.001), corresponding with the correlation of advanced fibrosis (Metavir score F3-F4) and nonadvanced fibrosis groups (Metavir score F0-F2), (agreement = 89%, kappa = 0.74, p-value <0.001). SMART AI-PATHO, the first pivotal artificially intelligent diagnostic tool for the color-based NAFLD hepatic tissue staging in Thailand, demonstrated satisfactory performance as a pathologist to provide liver fibrosis scoring and steatosis grading. In the future, developing AI algorithms and reliable testing on a larger scale may increase accuracy and contribute to telemedicine consultations for general pathologists in clinical practice.

摘要

肝纤维化是一种以肝组织异常增殖为特征的病理状态,随后可能发展为肝硬化或肝细胞癌。人工智能和深度学习的发展已开始在纤维化检测中发挥重要作用。本研究旨在开发SMART AI-PATHO,这是一种结合组织病理学结构特征量化的全自动评估方法,用于分析非酒精性脂肪性肝病(NAFLD)核心活检中的脂肪变性和纤维化,并采用梅塔维(Metavir)纤维化分期作为标准参考以及脂肪评估分级测量,以与病理学家的解读进行比较。我们的研究招募了146名参与者。病理学家与SMART AI-PATHO之间的梅塔维评分系统解读具有显著相关性(一致性=68%,kappa=0.59,p值<0.001),其中对显著纤维化(梅塔维评分F2-F4)和非显著纤维化(梅塔维评分F0-F1)的亚组分析显示出高度相关的结果(一致性=80%,kappa=0.61,p值<0.001),这与晚期纤维化(梅塔维评分F3-F4)和非晚期纤维化组(梅塔维评分F0-F2)的相关性一致(一致性=89%,kappa=0.74,p值<0.001)。SMART AI-PATHO是泰国首个用于基于颜色的NAFLD肝组织分期的关键人工智能诊断工具,作为一种病理学家工具,在提供肝纤维化评分和脂肪变性分级方面表现令人满意。未来,开发人工智能算法并进行更大规模的可靠测试可能会提高准确性,并有助于临床实践中普通病理学家的远程医疗咨询。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验