Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States.
Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States.
Semin Cell Dev Biol. 2021 Mar;111:52-59. doi: 10.1016/j.semcdb.2020.05.025. Epub 2020 Jun 12.
Over the last decade, scientists have begun to model CNS development, function, and disease in vitro using human pluripotent stem cell (hPSC)-derived organoids. Using traditional protocols, these 3D tissues are generated by combining the innate emergent properties of differentiating hPSC aggregates with a bioreactor environment that induces interstitial transport of oxygen and nutrients and an optional supportive hydrogel extracellular matrix (ECM). During extended culture, the hPSC-derived neural organoids (hNOs) obtain millimeter scale sizes with internal microscale cytoarchitectures, cellular phenotypes, and neuronal circuit behaviors mimetic of those observed in the developing brain, eye, or spinal cord. Early studies evaluated the cytoarchitectural and phenotypical character of these organoids and provided unprecedented insight into the morphogenetic processes that govern CNS development. Comparisons to human fetal tissues revealed their significant similarities and differences. While hNOs have current disease modeling applications and significant future promise, their value as anatomical and physiological models is limited because they fail to form reproducibly and recapitulate more mature in vivo features. These include biomimetic macroscale tissue morphology, positioning of morphogen signaling centers to orchestrate appropriate spatial organization and intra- and inter-connectivity of discrete tissue regions, maturation of physiologically relevant neural circuits, and formation of vascular networks that can support sustained in vitro tissue growth. To address these inadequacies scientists have begun to integrate organoid culture with bioengineering techniques and methodologies including genome editing, biomaterials, and microfabricated and microfluidic platforms that enable spatiotemporal control of cellular differentiation or the biochemical and biophysical cues that orchestrate organoid morphogenesis. This review will examine recent advances in hNO technologies and culture strategies that promote reproducible in vitro morphogenesis and greater biomimicry in structure and function.
在过去的十年中,科学家们开始使用人类多能干细胞(hPSC)衍生的类器官在体外模拟中枢神经系统的发育、功能和疾病。使用传统方案,通过将分化的 hPSC 聚集体的固有突现特性与诱导氧气和营养物质的间质传输以及可选的支持性水凝胶细胞外基质(ECM)的生物反应器环境相结合,生成这些 3D 组织。在延长培养过程中,hPSC 衍生的神经类器官(hNO)获得毫米级尺寸,内部具有微尺度细胞结构、细胞表型和神经元电路行为,模拟了在发育中的大脑、眼睛或脊髓中观察到的行为。早期研究评估了这些类器官的细胞结构和表型特征,并为控制中枢神经系统发育的形态发生过程提供了前所未有的见解。与人类胎儿组织的比较显示出它们的显著相似性和差异性。尽管 hNO 具有当前的疾病建模应用和重要的未来前景,但作为解剖学和生理学模型的价值有限,因为它们无法可重复地形成并再现更成熟的体内特征。这些特征包括仿生宏观组织形态、形态发生信号中心的定位以协调适当的空间组织和离散组织区域的内部和外部连接、生理相关神经回路的成熟以及血管网络的形成,这些血管网络可以支持体外组织的持续生长。为了解决这些不足,科学家们开始将类器官培养与生物工程技术和方法(包括基因组编辑、生物材料以及微制造和微流控平台)集成,这些技术和方法能够实现细胞分化的时空控制或协调类器官形态发生的生化和生物物理线索。本综述将检查 hNO 技术和培养策略的最新进展,这些进展促进了可重复的体外形态发生以及在结构和功能上更大程度的仿生。