Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States.
J Am Chem Soc. 2020 Jul 22;142(29):12777-12783. doi: 10.1021/jacs.0c05175. Epub 2020 Jul 7.
Helical structures are ubiquitous in natural and synthetic materials across multiple length scales. Excellent and sometimes unusual chiral optical, mechanical, and sensing properties have been previously demonstrated in such symmetry-breaking shape, yet a general principle to realize helical structures at the sub-100 nm scale via colloidal synthesis remains underexplored. In this work, we describe the wet-chemical synthesis of monodisperse nanohelices based on gadolinium oxide (GdO). Aberration-corrected electron microscopy revealed that individual nanohelices consist of a bilayer structure with the outer and inner layers derived from the {111} and {100} planes of bulk GdO, respectively. Distinct from existing inorganic nanocoils with flexible bending geometries, the built-in lattice misfit between two adjacent crystal planes induces continuous helical growth yielding three-dimensional rigid nanohelices. Furthermore, the presence of water in the reaction was found to suppress the formation of nanohelices, producing nanoplates expressing predominantly {111} planes. Our study not only provides a bottom-up synthetic route and mechanistic understanding of nanohelices formation but may also open up new possibilities for creating chiral plasmonic nanostructures, luminescent biological labels, and nanoscale transducers.
螺旋结构在多种长度尺度的天然和合成材料中无处不在。在这种打破对称性的形状中,已经展示了出色的,有时甚至是不寻常的手性光学、机械和传感性能,但通过胶体合成在亚 100nm 尺度上实现螺旋结构的一般原理仍未得到充分探索。在这项工作中,我们描述了基于氧化钆 (GdO) 的单分散纳米螺旋的湿化学合成。像差校正电子显微镜显示,单个纳米螺旋由双层结构组成,外层和内层分别来自块状 GdO 的 {111} 和 {100} 面。与具有灵活弯曲几何形状的现有无机纳米线圈不同,两个相邻晶面之间的晶格不匹配导致连续的螺旋生长,从而产生三维刚性纳米螺旋。此外,还发现反应中存在的水会抑制纳米螺旋的形成,从而产生主要表达 {111} 面的纳米板。我们的研究不仅提供了一种自上而下的合成途径和纳米螺旋形成的机制理解,而且还可能为创建手性等离子体纳米结构、发光生物标记物和纳米尺度传感器开辟新的可能性。